Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation

Abstract

Regulatory T cells (Tregs) play a pivotal role in immune-tolerance, and loss of Treg function can lead to the development of autoimmunity. Natural Tregs generated in the thymus substantially contribute to the Treg pool in the periphery, where they suppress self-reactive effector T cells (Teff) responses. Recently, we showed that OX40L (TNFSF4) is able to drive selective proliferation of peripheral Tregs independent of canonical antigen presentation (CAP-independent) in the presence of low-dose IL-2. Therefore, we hypothesized that OX40 signaling might be integral to the TCR-independent phase of murine and human thymic Treg (tTreg) development. Development of tTregs is a two-step process: Strong T-cell receptor (TCR) signals in combination with co-signals from the TNFRSF members facilitate tTreg precursor selection, followed by a TCR-independent phase of tTreg development in which their maturation is driven by IL-2. Therefore, we investigated whether OX40 signaling could also play a critical role in the TCR-independent phase of tTreg development. OX40−/− mice had significantly reduced numbers of CD25Foxp3low tTreg precursors and CD25+Foxp3+ mature tTregs, while OX40L treatment of WT mice induced significant proliferation of these cell subsets. Relative to tTeff cells, OX40 was expressed at higher levels in both murine and human tTreg precursors and mature tTregs. In ex vivo cultures, OX40L increased tTreg maturation and induced CAP-independent proliferation of both murine and human tTregs, which was mediated through the activation of AKT-mTOR signaling. These novel findings show an evolutionarily conserved role for OX40 signaling in tTreg development and proliferation, and might enable the development of novel strategies to increase Tregs and suppress autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000; 101: 455–458.

    CAS  PubMed  Google Scholar 

  2. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 2003; 4: 330–336.

    CAS  PubMed  Google Scholar 

  3. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    CAS  PubMed  Google Scholar 

  4. Lee HM, Bautista JL, Hsieh CS. Thymic and peripheral differentiation of regulatory T cells. Adv Immunol 2011; 112: 25–71.

    PubMed  Google Scholar 

  5. Jordan MS. Thymic selection of CD4(+)CD25(+) regulatory T cells induced by an agonist self-peptide (vol 2, pg 301, 2001). Nat Immunol 2001; 2: 468–468.

    CAS  Google Scholar 

  6. Kieback E, Hilgenberg E, Stervbo U, Lampropoulou V, Shen P, Bunse M et al. Thymus-derived regulatory T cells are positively selected on natural self-antigen through cognate interactions of high functional avidity. Immunity 2016; 44: 1114–1126.

    CAS  PubMed  Google Scholar 

  7. Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008; 28: 100–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G et al. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 2013; 38: 1116–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 2014; 15: 473–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu FT, Yang W, Wang YH, Ma HD, Tang W, Yang JB et al. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun 2015; 61: 62–72.

    CAS  PubMed  Google Scholar 

  11. Nazzal D, Gradolatto A, Truffault F, Bismuth J, Berrih-Aknin S. Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis 2014; 5: e1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3(+) regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10: 490–500.

    CAS  Google Scholar 

  13. Caramalho I, Nunes-Cabaco H, Foxall RB, Sousa AE. Regulatory T-cell development in the human thymus. Front Immunol 2015; 6: 395.

    PubMed  PubMed Central  Google Scholar 

  14. Nunes-Cabaco H, Caramalho I, Sepulveda N, Sousa AE. Differentiation of human thymic regulatory T cells at the double positive stage. Eur J Immunol 2011; 41: 3604–3614.

    CAS  PubMed  Google Scholar 

  15. Caramalho I, Nunes-Silva V, Pires AR, Mota C, Pinto AI, Nunes-Cabaco H et al. Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J Autoimmun 2015; 56: 98–110.

    CAS  PubMed  Google Scholar 

  16. Kumar P, Alharshawi K, Bhattacharya P, Marinelarena A, Haddad C, Sun Z et al. Soluble OX40L and JAG1 induce selective proliferation of functional regulatory T-cells independent of canonical TCR signaling. Sci Rep 2017; 7: 39751.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattacharya P, Gopisetty A, Ganesh BB, Sheng JR, Prabhakar BS. GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J Leukoc Biol 2011; 89: 235–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gopisetty A, Bhattacharya P, Haddad C, Bruno JC Jr., Vasu C, Miele L et al. OX40L/Jagged1 cosignaling by GM-CSF-induced bone marrow-derived dendritic cells is required for the expansion of functional regulatory T cells. J Immunol 2013; 190: 5516–5525.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Okamoto Y, Douek DC, McFarland RD, Koup RA. Effects of exogenous interleukin-7 on human thymus function. Blood 2002; 99: 2851–2858.

    CAS  PubMed  Google Scholar 

  20. Xing Y, Hogquist KA. Isolation, identification, and purification of murine thymic epithelial cells. J Vis Exp 2014, e51780 e-pub ahead of print Aug;10.3791/51780(90).

  21. Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Bhattacharya P, Sun Z et al. PKC- is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells. Sci Rep 2017; 7: 6594.

    PubMed  PubMed Central  Google Scholar 

  22. Vail ME, Chaisson ML, Thompson J, Fausto N. Bcl-2 expression delays hepatocyte cell cycle progression during liver regeneration. Oncogene 2002; 21: 1548–1555.

    CAS  PubMed  Google Scholar 

  23. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006; 13: 1351–1359.

    CAS  PubMed  Google Scholar 

  24. Cheng GY, Yu AX, Dee MJ, Malek TR. IL-2 R Signaling Is Essential for Functional Maturation of Regulatory T Cells during Thymic Development. Journal of Immunology 2013; 190: 1567–1575.

    CAS  Google Scholar 

  25. Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006; 25: 441–454.

    CAS  PubMed  Google Scholar 

  26. Chen W, Konkel JE. Development of thymic Foxp3(+) regulatory T cells: TGF-beta matters. Eur J Immunol 2015; 45: 958–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML. Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 2010; 115: 5366–5375.

    CAS  PubMed  Google Scholar 

  28. Hsieh CS, Zheng Y, Liang YQ, Fontenot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 2006; 7: 401–410.

    CAS  PubMed  Google Scholar 

  29. Bayer AL, Yu A, Malek TR. Function of the IL-2 R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol 2007; 178: 4062–4071.

    CAS  PubMed  Google Scholar 

  30. Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 1987; 24: 1281–1290.

    CAS  PubMed  Google Scholar 

  31. Mallett S, Fossum S, Barclay AN. Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor. EMBO J 1990; 9: 1063–1068.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maddur MS, Sharma M, Hegde P, Stephen-Victor E, Pulendran B, Kaveri SV. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun 2014; 5: 4092.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. So T, Song J, Sugie K, Altman A, Croft M. Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proc Natl Acad Sci USA 2006; 103: 3740–3745.

    CAS  PubMed  Google Scholar 

  34. Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jaffee EM et al. OX40 costimulation can abrogate Foxp3(+) regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer 2009; 125: 630–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Bhattacharya P, Sun ZM et al. PKC-theta is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells. Sci Rep 2017; 7: 6594.

    PubMed  PubMed Central  Google Scholar 

  36. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S et al. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004; 172: 3580–3589.

    CAS  PubMed  Google Scholar 

  37. Piconese S, Pittoni P, Burocchi A, Gorzanelli A, Care A, Tripodo C et al. A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol 2010; 40: 2902–2913.

    PubMed  Google Scholar 

  38. Sereti I, Gea-Banacloche J, Kan MY, Hallahan CW, Lane HC. Interleukin 2 leads to dose-dependent expression of the alpha chain of the IL-2 receptor on CD25-negative T lymphocytes in the absence of exogenous antigenic stimulation. Clin Immunol 2000; 97: 266–276.

    CAS  PubMed  Google Scholar 

  39. Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM. IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J Immunol 2011; 186: 6329–6337.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007; 5: e38.

    PubMed  PubMed Central  Google Scholar 

  41. Koenecke C, Czeloth N, Bubke A, Schmitz S, Kissenpfennig A, Malissen B et al. Alloantigen-specific de novo-induced Foxp3+ Treg revert in vivo and do not protect from experimental GVHD. Eur J Immunol 2009; 39: 3091–3096.

    CAS  PubMed  Google Scholar 

  42. Okada M, Hibino S, Someya K, Yoshmura A. Regulation of regulatory T cells: epigenetics and plasticity. Adv Immunol 2014; 124: 249–273.

    PubMed  Google Scholar 

  43. Baeyens A, Saadoun D, Billiard F, Rouers A, Gregoire S. Zaragoza B, et al. Effector T cells boost regulatory T cell expansion by IL-2, TNF, OX40, and plasmacytoid dendritic cells depending on the immune context. J Immunol 2015; 194: 999–1010.

    CAS  PubMed  Google Scholar 

  44. Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009; 229: 173–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Croft M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 2010; 28: 57–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. So T, Croft M. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front Immunol 2013; 4: 139.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Song J, So T, Croft M. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol 2008; 180: 7240–7248.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. So T, Soroosh P, Eun SY, Altman A, Croft M. Antigen-independent signalosome of CARMA1, PKC theta, and TNF receptor-associated factor 2 (TRAF2) determines NF-kappa B signaling in T cells. Proc Natl Acad Sci USA 2011; 108: 2903–2908.

    CAS  PubMed  Google Scholar 

  49. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008; 105: 7797–7802.

    CAS  PubMed  Google Scholar 

  50. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 2015; 16: 188–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A et al. OX40 costimulation turns off Foxp3+ Tregs. Blood 2007; 110: 2501–2510.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25(+)Foxp3(+) T cells. J Immunol 2007; 179: 1427–1430.

    CAS  PubMed  Google Scholar 

  53. Nagar M, Jacob-Hirsch J, Vernitsky H, Berkun Y, Ben-Horin S, Amariglio N et al. TNF activates a NF-kappa B-regulated cellular program in human CD45RA(-) regulatory T Cells that modulates their suppressive function. J Immunol 2010; 184: 3570–3581.

    CAS  PubMed  Google Scholar 

  54. Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN et al. Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 2009; 183: 4853–4857.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bresson D, Fousteri G, Manenkova Y, Croft M, von Herrath M. Antigen-specific prevention of type 1 diabetes in NOD mice is ameliorated by OX40 agonist treatment. J Autoimmun 2011; 37: 342–351.

    CAS  PubMed  Google Scholar 

  56. Haddad CS, Bhattacharya P, Alharshawi K, Marinelarena A, Kumar P, El-Sayed O et al. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice. Autoimmunity 2016; 49: 298–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiao X, Gong W, Demirci G, Liu W, Spoerl S, Chu X et al. New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J Immunol 2012; 188: 892–901.

    CAS  PubMed  Google Scholar 

  58. Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS ONE 2014; 9: e89350.

    PubMed  PubMed Central  Google Scholar 

  59. Shrimali RK, Ahmad S, Verma V, Zeng P, Ananth S, Gaur P et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 2017; 5: 755–766.

    CAS  PubMed  Google Scholar 

  60. Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunol 2016; 5: e70.

    Google Scholar 

  61. Bell RB, Leidner RS, Crittenden MR, Curti BD, Feng Z, Montler R et al. OX40 signaling in head and neck squamous cell carcinoma: Overcoming immunosuppression in the tumor microenvironment. Oral Oncol 2016; 52: 1–10.

    CAS  PubMed  Google Scholar 

  62. von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer. Nat Rev Drug Discov 2013; 12: 51–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health for grants #R01 AI107516-01A1 and #1R41AI125039-01. We thank the Juvenile Diabetes Research Foundation (JDRF) for grant #2-SRA-2016-245- S-B to Dr. Prabhakar. We thank the American Heart Association for offering a post-doctoral fellowship #15POST25090228 to PK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bellur S Prabhakar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Marinelarena, A., Raghunathan, D. et al. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol Immunol 16, 138–153 (2019). https://doi.org/10.1038/cmi.2018.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2018.8

Keywords

This article is cited by

Search

Quick links