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TLR-mediated metabolic reprogramming in the tumor
microenvironment: potential novel strategies for cancer
immunotherapy

Lan Huang1,2, Huaxi Xu2 and Guangyong Peng1

Cellular energy metabolism not only promotes tumor cell growth and metastasis but also directs immune cell
survival, proliferation and the ability to perform specific and functional immune responses within the tumor
microenvironment. A better understanding of the molecular regulation of metabolism in different cell components in
the tumor-suppressive microenvironment is critical for the development of effective strategies for human cancer
treatments. Toll-like receptors (TLRs) have recently been recognized as critical factors involved in tumor
pathogenesis, regulating both tumor cells and tumor-infiltrating innate and adaptive immune cells. However, little is
known about the molecular crosstalk between TLR signaling and tumor or/and immune cell metabolism, although
there is abundant expression of TLRs in these cells. In this review, we explore the functional role of TLR signaling
in reprogramming cell metabolism in the tumor microenvironment. In particular, we discuss how malignant tumors
regulate metabolism to support their growth and survival, summarize more recently identified metabolic profiles of
different immune cell subsets and TLR-mediated regulation of cellular metabolism in both tumor and immune
cells, and further explore potential strategies targeting cell metabolism for TLR-based cancer therapy. An improved
understanding of these issues should open new avenues for the development of novel strategies via TLR-mediated
metabolic reprogramming of the tumor microenvironment for cancer immunotherapy.
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INTRODUCTION

It is well established that the Warburg effect of aerobic
glycolysis is a key metabolic hallmark of cancer. Malignant
tumor cells selectively reprogram their metabolism to meet the
rapid energy requirements for proliferation, survival and
metastasis, as well as for sustaining the tumor-suppressive
microenvironment.1–5 In addition to tumor cells, it is now well
recognized that metabolic reprogramming occurs in all cell
components within the tumor microenvironment that have
hypoxic and acidotic conditions, including dendritic cells
(DCs), macrophages and T cells.5,6 During normal activation,
DCs and macrophages undergo a metabolic switch to glycolysis
instead of oxidative phosphorylation (OXPHOS), which also
directs the macrophage M1 or M2 phenotype switch.7–9

Tumor-associated macrophages (TAMs) have increased aerobic
glycolysis with an inflammatory phenotype and protumorigenic

effect.10–12 However, tumor-derived DCs with tolerogenic
functions have inhibited glycolysis but increased lipid
accumulation.13,14 Cellular energy metabolism also directs
T-cell survival, proliferation and their specific functions.15–19

Aerobic glycolysis is the main metabolic pathway and is
specifically required for effector function in T cells.4,15,19–22

By contrast, lipid oxidation has been found to be a primary
metabolic pathway for induced Treg cells and memory CD8+

T cells.20,23–25 However, very limited information is known
about how malignant tumors and tumor-derived microenvir-
onmental factors affect different types of tumor-infiltrating
T-cell (TIL) fate and metabolism. Recent studies have suggested
that tumor cells can compete for glucose or restrict glycolysis in
TILs within the tumor microenvironment, resulting in T-cell
dysfunction and immune suppression.4,26–28 A better under-
standing of the molecular interactions and metabolic profiles of
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tumor cells and different types of immune cells within the
tumor-suppressive microenvironment will facilitate the devel-
opment of novel strategies for cancer therapy via metabolic
reprogramming of cell fate and functions.29

Toll-like receptors (TLRs), the most well-known pattern
recognition receptors, recognize molecules from invading
pathogens and are important for innate immunity and
inflammatory responses. It is now well recognized that TLR-
mediated metabolic reprogramming is important for the
activation, maturation and immunogenic functions of macro-
phages and DCs.7,30–35 TLRs are also widely expressed on
different types of tumor cells, regulating tumor growth and
functions.36–38 Studies from multiple preclinical animal models
and clinical trials have shown that either promotion or
inhibition of tumor survival and growth is mediated by
different TLR stimulations in tumor cells.36,39–41 Recent studies
suggest that TLRs directly regulate metabolism, affecting tumor
behavior and function in melanoma, prostate, head and neck
carcinoma and breast cancer.38,42–44 Furthermore, several TLR
ligands, including imiquimod (TLR7) and CpG (TLR9), have
shown significant promise for cancer treatment.39,45 Increasing
evidence suggests that TLR signaling also affects the

differentiation and function of different T-cell subsets, includ-
ing Th1, Th2 and Th17 cells.46–48 Furthermore, human TLR8
signaling can directly reverse the suppressive function of
tumor-derived CD4+, CD8+ and γδ Treg cells.49–53 However,
whether and how TLR signaling regulates T-cell metabolism is
still under investigation. Understanding functional and meta-
bolic regulation in tumor cells and tumor-infiltrating immune
cells mediated by different TLRs will be important for the
development of novel TLR-based cancer immunotherapy.

ENERGY METABOLISM DIRECTS TUMOR GROWTH AND

METASTASIS

In the tumor microenvironment, tumors prefer to use aerobic
glycolysis instead of OXPHOS to meet their demands for
growth and proliferation, especially for rapid ATP generation
and biosynthesis54 (Table 1). During tumor growth with
hypoxic stress in the microenvironment, hypoxia-inducible
transcription factor (HIF) has a critical role in promoting the
transcriptional program for this metabolic switch. HIF-1α
induces expression of lactate dehydrogenase and pyruvate
dehydrogenase kinase and facilitates the metabolic switch by
binding to glucose transporter 1 (Glut1) and other glycolytic

Table 1 Summary of the metabolic profiles of tumor cells and immune cells

Cell types Metabolic profiles References

Tumors Glucose metabolism: glycolysis↑ (ATP/ADP and NAD+/NADH↑), HIF-1α↑, Akt↑, Glut1↑;
Lipid metabolism: de novo lipid synthesis↑, fatty-acid and membrane lipid synthesis↑, cholesterol synthesis↑;
Amino-acid metabolism: protein synthesis↑; levels of amino acid transporters↑, serine and glycine synthesis↑,
glutamine↑;
Metabolites↑: lactate, cAMP, IDO and adenosine

2,3,54,59,68,123

DCs Activation-induced Warburg metabolism:
Glucose metabolism: glycolysis↑, HIF-1α↑, Glut1↑, iNOS and ROS↑, lactate↑, u-PFK2↑, OXPHOS↓;
Lipid metabolism: de novo synthesis of fatty acids↑, AMPK activation↓, FAO and mitochondrial biogenesis↓;
Amino-acid metabolism: cystine uptake and cysteine production↑
Others: activation of PI3K, TBK1 and IKKε signaling; succinylation of GAPDH, MDH, LDHA, glutamate carrier
1 and multiple proteins.
Tolerogenic DCs: OXPHOS↑ and lipid accumulation

7,13,14,30,80,109

Macrophages Activation-induced metabolism:
Glucose metabolism: glycolysis↑, HIF-1α↑, Glut1↑, iNOS, NO and ROS↑, lactate↑, u-PFK2↑, OXPHOS↓;
Lipid metabolism: lipid biosynthesis↑, AMPK activation↓, FAO↓;
Amino-acid metabolism: cellular arginine↑ and citrulline↑.
‘M1 macrophages’: glycolysis↑, fatty-acid synthesis↑, citrulline↑, iNOS/NO↑, HIF-1α↑, u-PFK2↑, mTOR↑;
‘M2 macrophages’: OXPHOS↑, NO↓, Arg-1↑, PFKFB1↑, AMPK↑

7,33,77

Activated T cells Glucose metabolism: glycolysis and lactate production↑, Glut1↑, PPP↑, glutamine uptake↑, pyruvate oxidation
through TCA cycle↓;
Lipid metabolism: de novo fatty acid↑, FAO↓;
Amino-acid metabolism: amino-acid transporter level (Slc7a5) ↑

19,81,84

Th1/Th2/Th17 cells Glycolysis↑, Glut1↑, lactate production↑, HIF-1 α↑; mTORC1 activity (Th1 and Th17)↑ and mTORC2 activity
(Th2)↑; de novo fatty-acid synthesis↑; amino acid (glutamine and leucine) ↑

19,62,81

Treg cells Glycolysis↑, glucose uptake↑, AMPK activation↑, mTORC1↓; FAO↑ and lipogenesis↑; glutamine and leucine↑,
amino-acid-catabolizing enzymes ARG1, HDC, TDH and IL-4I1↑; IDO↑; tryptophan catabolism (Kynurenine)↑

18,19,62

Abbreviations: AMPK, AMP-activated protein kinase; Arg-1, arginase 1; DC, dendritic cell; Glut1, glucose transporter 1; FAO, Fatty acid β-oxidation; HDC, Histidine
decarboxylase; HIF, hypoxia-inducible transcription factor; IDO, indoleamine 2, 3-dioxygenase; IL4I1, Interleukin 4 induced 1; iNOS, inducible nitric oxide synthase;
IKKε, Inhibitor-κB kinase ε; LDHA, Lactate dehydrogenase A; MDH, malate dehydrogenase; NO, nitric oxide; OXPHOS, oxidative phosphorylation; PFKFB-1, 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 1; PI3K, Phosphoinositide 3-kinase; ROS, reactive oxygen species; TBK1, Serine/threonine-protein kinase 1; TCA,
tricarboxylic acid; TDH, Threonine dehydrogenase; Treg, regulatory T cell; u-PFK2, u-Phosphofructokinase 2.
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enzymes. This results in increased lactate production from
pyruvate and limited acetyl-CoA production for the tricar-
boxylic acid (TCA) cycle promotion through inhibiting pyr-
uvate dehydrogenase.55,56 The Warburg effect of cancer
glycolysis occurs even in the presence of completely functional
mitochondria, which significantly benefits cancer cell biosynth-
esis and survival. Aerobic glycolysis can also increase rapidly
and maintain a higher ratio of ATP/ADP to assist the tumor to
avoid apoptosis and promote proliferation than that obtained
from mitochondrial respiration.2,3 In addition, glycolysis-
derived metabolites, such as palmitate, NADPH and Acetyl-
CoA, promote fatty-acid synthesis, cell membrane constitution
and macromolecular precursor biosynthesis. Furthermore, the
high rates of glycolysis in cancer cells also help their competi-
tion with TILs in the tumor microenvironment for the limited
glucose, resulting in suppression of the TIL effector function
and maintenance of a suppressive microenvironment.4,5 In
addition to the involvement of the transcription factor HIF,
many oncogenes directly regulate the metabolic rewriting of
cancer cells. For example, mutated KRAS drives metabolic
reprogramming of lung cancer and nutrient uptake.57 Mutated
c-Myc increases the transcriptional activities of enzymes in
glycolysis and glutaminolysis, contributing to tumor growth
and chemoresistance.58,59 p53 expression in tumor cells also
controls metabolic genes and alters glucose utilization.60 In
addition to their dominant glycolysis and increased glucose
metabolism, malignant tumor cells may utilize other metabolic
pathways, such as fatty-acid oxidation and cholesterol synth-
esis, to meet their requirements for synthesizing macromole-
cules, such as nucleic acids, lipids and proteins, during their
growth and metastasis processes.61,62 Therefore, an improved
understanding of the molecular processes of tumor metabolism
will facilitate the design of effective therapeutics that specifically
target cancer metabolic programming.

TUMOR-DERIVED METABOLITES MAINTAIN A POTENT

TUMOR-SUPPRESSIVE MICROENVIRONMENT

Malignant tumors display heightened glucose and glutamine
consumption, resulting in the depletion of nutrients and
competition with different types of tumor-infiltrating immune
cells.4,5 Meanwhile, metabolic end products are also accumu-
lated within the tumor microenvironment, including cyclic
adenosine monophosphate (cAMP), indoleamine 2, 3-
dioxygenase (IDO), adenosine and lactate.63 These hypoxia-
derived metabolites are potent immune suppressors that can
protect tumor cells from T-cell-mediated antitumor immune
responses, which is one of the strategies utilized by tumor cells
to create an immunosuppressive micromilieu and escape the
host immune system.63–65 Lactate is the main metabolite of
glycolysis utilized by malignant tumor cells (Warburg
effect).66,67 Increased lactate production supports NAD+ regen-
eration in the absence of oxygen consumption and may
provide other benefits to tumor cells related to altered pH,
which leads to an acidified tumor microenvironment and
cancer cell invasion.68 Tumor-derived lactate blocks differen-
tiation and activation of monocytes and promotes M2 TAM

polarization.69,70 Furthermore, intracellular lactate can trigger
T cell and NK cell suppression and impair their tumor
immunosurveillance functions.71,72 More recent studies have
indicated that tumor-derived lactate promotes naive T-cell
apoptosis through suppression of FAK family-interacting of
200 kDa (FIP200) and autophagy in ovarian cancer patients.28

cAMP is also a critical component of the tumor-induced
hypoxic microenvironment and is a potent inhibitor of effector
tumor-specific T cells.63 Furthermore, cAMP is involved in
Treg-mediated suppression and is a potent inhibitor of
interleukin (IL)-2 production and subsequent CD4+ T-cell
proliferation.73,74 Recent studies have demonstrated that dif-
ferent types of tumor cells can directly induce conversion from
naive/effector T cells to senescent T cells with potent suppres-
sive activity.38,44 These studies have further identified that high
concentrations of cAMP exist in tumor cells and tumor-
induced senescent T cells and that tumor-derived endogenous
cAMP is responsible for the induction of T-cell senescence.38,44

Adenosine is another important metabolite in tumor hypoxic
microenvironments.63,75 Tumor-produced adenosine triggers
immunosuppressive signaling via intracellular cyclic AMP,
elevating A2A adenosine receptors on antitumor T cells.
Furthermore, tumor-infiltrating Treg cells undergo apoptosis
and generate adenosine to suppress T-cell-mediated
tumor immunity through the A2A pathway.75 IDO expressed
in tumors depletes tryptophan and inhibits T-cell
proliferation.76 A better definition of the mechanistic links
between tumor immunosuppression, hypoxia and metabolic
dysregulation should lead to novel and alternative strategies
that are capable of augmenting immune responses directly
against cancer.

METABOLIC REGULATION IS CRUCIAL FOR IMMUNE

CELL DEVELOPMENT AND FUNCTIONS

Metabolic programming also occurs in immune cell compo-
nents in the tumor microenvironment. The Warburg effect is
utilized by innate immune cells, including macrophages and
DCs (Table 1). Activation of macrophages with different types
of stimuli, such as TLR ligands, IFN-γ and certain pathogens,
drives a metabolic switch from OXPHOS to glycolysis.7,30–33

Macrophages are classified into two groups, M1 and M2, based
on the stimuli and their functions. M1 macrophages activated
by classical stimuli, such as TLR ligands and bacteria, possess
an inflammatory phenotype and affect an antitumor function.
M2 microphages, polarized by IL-4 and IL-13, have an anti-
inflammatory phenotype and have pro-tumoral activity.33,77

Recent studies have clearly shown that M1 and M2 macro-
phages have different metabolic profiles. M1 macrophages
rely on glycolysis for ATP production and their increased
fatty-acid synthesis, whereas M2 macrophages are supported by
fatty-acid uptake and OXPHOS in the mitochondria to
produce ATP.7,33 In addition, M1 macrophages have increased
levels of inducible nitric oxide synthase (iNOS), HIF-1α and
u-Phosphofructokinase 2, whereas M2 macrophages have
increased levels of arginase 1, AMP-activated protein kinase
and 6-phosphofructo-2-kinase/fructose-2,6-biSphosphatase 1.7,33
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Macrophages are dominant innate immune cells in the tumor-
suppressive microenvironment. TAMs have increased aerobic
glycolysis with an inflammatory phenotype and pro-tumorigenic
effects, which might be induced by enhanced HIF-1α.10–12 DCs
have a very similar metabolic profile as macrophages. DCs
activated by TLR agonists undergo a marked metabolic repro-
graming that is characterized by a switch from mitochondrial
lipid oxidation and OXPHOs to increased aerobic
glycolysis.7,30,34,35 Therefore, glycolysis is also important for
DC activation, maturation and immunogenic functions. How-
ever, tolerogenic DCs, similar to M2 macrophages, have a
distinct metabolic profile from immunogenic DCs with
increased mitochondrial metabolism and OXPHOS.34,78 Tolero-
genic DCs display immature and inactivated phenotypes and
favor Treg induction and immune suppression.79,80 In addition,
tumor-derived DCs with tolerogenic functions have inhibited
glycolysis, but increased lipid accumulation, resulting in
impaired APC functions and T-cell priming.13,14

Significant progress has been made in understanding T-cell
metabolism over the last several years. It is now recognized that
cellular energy metabolism directs T-cell survival, proliferation
and their specific functions15–19 (Table 1). Resting T cells
generate their energy using TCA to meet their limited
biosynthesis. Activated T cells require more nutrients to supply
them with an appropriate amount of energy from a sufficient
biomass, and glucose and amino-acid metabolism are
increased.81 Activated CD4+ T cells increase both glycolysis
and fatty-acid metabolism, whereas CD8+ T cells dominantly
shift metabolism to glycolysis to rapidly produce ATP.81–83

Mitochondrial fatty-acid oxidation is also required for the
generation of memory T cells.24 In naive and memory T cells,
stimulation of TCR and CD28 drives T-cell metabolic repro-
gramming, which is controlled by the transcription factor
c-Myc that regulates the expression of glucose and glutamine
transporters instead of HIF.84 mTOR upregulation of c-Myc
and HIF is responsible for the maintenance of glycolytic activity
during the process of T-cell activation.84 Notably, different T
cell subsets have different metabolic profiles.16–19 Aerobic
glycolysis is the main metabolic pathway and is specifically
required for T cell effector function upon activation.4,15,19–22 By
contrast, lipid oxidation has been found to be the primary
metabolic pathway for induced Treg cells and memory CD8+

T cells.20,23–25 Furthermore, endogenous fatty acid synthesis
and the glycolytic-lipogenic axis are important for Th17 cell
development.85 In addition, both glycolysis and lipid metabo-
lism regulate Treg differentiation, stability and homeostasis, as
well as suppressive its activity.18,20,23,86–89 Several molecular
signaling pathways and/or molecules, including AKT-mTOR
signaling, TLR signaling, as well as the transcription factors
HIF1α, c-Myc and FoxP3, have been shown to directly regulate
Treg metabolic programming and development.18,23,84,86–88,90

Given that TILs are dysfunctional and that metabolism directs
the T-cell fate and function, defining the metabolic processes of
different subsets of T cells should provide alternative novel
strategies for breaking the immune tolerance induced by the
tumor-suppressive microenvironment.

TLR SIGNALING INVOLVES METABOLIC

REPROGRAMMING IN TUMOR CELLS

TLRs recognize pathogen-associated molecular patterns and are
critical components of the innate immune system, acting as a
link between innate and adaptive immunity to orchestrate
pathogen infections and inflammatory responses. In addition
to immune cells, TLRs are also widely expressed on different
types of tumor cells, regulating tumor growth and function,
directly or indirectly, as a ‘double-edged sword’.36–38 Several
TLR ligands, such as the TLR7 agonist imiquimod, TLR3
ligand Poly (I:C) and TLR9 ligand CpG, can directly induce
TLR-positive tumor cell apoptosis or enhance tumor-
infiltrating innate and tumor-specific T-cell function.39,45,91,92

By contrast, signaling through TLR2 and TLR5 can enhance the
proliferation and survival of gastric cancer cells, promoting the
effects of tumor metastasis.93–95 Lipopolysaccharide (LPS;
TLR4) and Loxoribine (TLR7) favor tumor development
and survival.96,97 In addition, increased expression of TLR9
seems to have a close relationship with tumor proliferation
in oral squamous cell carcinoma patients, and upregulation
and activation of TLR4 is associated with tumor relapse,
metastasis and chemoresistance in colorectal and pancreatic
cancers.41,98–102 Identifying the unique signaling pathways in
tumor cells mediated by different TLRs will be important for
exploring the molecular mechanisms involved in cancer
immunopathogenesis, as well as for the development of novel
TLR-based therapy for human cancer.

More recent studies suggest that TLRs may directly regulate
cell metabolism, affecting tumor behaviors and functions
(Table 2). Stimulation with the TLR3 ligand Poly (A:U)
promotes metabolic reprograming of head and neck carcinoma
cells, resulting in increased tumor growth.42 TLR3 induces
tumor cells to switch from OXPHOS and TCA to anabolic
glycolysis, showing an enhanced extracellular acid cation rate
(ECAR) and lactate accumulation. The TLR3-mediated meta-
bolic switch in cancer cells involves the transcription factor
HIF-1α and hypoxic regulation, suggesting that TLR3 signaling
may benefit tumors to adapt to hypoxia in the tumor
microenvironment.42 Furthermore, TLR9 has been suggested
to regulate lipid peroxidation and trace elements (selenium,
copper, zinc, magnesium and iron) in response to oxidative
stress in patients with breast diseases and breast carcinoma.43

In addition to directly affecting tumor metabolic reprograming
and tumor growth, TLRs can regulate cancer cell metabolites,
indirectly influencing antitumor immune responses in the
tumor microenvironment. Recent studies have shown that
human tumor cells can convert naive/effector T cells into
senescent T cells to induce immune tolerance, which is
molecularly dependent on tumor-derived endogenous meta-
bolic cAMP.38,44 Notably, activation of TLR8 signaling in
tumor cells can prevent cAMP production by tumor cells
and block tumor-induced conversion of naive and tumor-
specific T cells into senescent cells, resulting in enhanced
antitumor immunity in vivo.38,44 In addition to the regulation
of cAMP, TLR can regulate another key metabolite, IDO,
during cancer immunotherapy. Administration of a TLR7
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agonist, imiquimod, significantly increases IDO expression in
tumor-draining lymph nodes, which inhibits tumor antigen-
specific immune responses. Inhibition of IDO expression after
TLR7 agonist administration could enhance the efficacy of
TLR-mediated therapy.103 TLR agonists can induce enhanced
expression of IDO in various cells in addition to tumor
cells.104,105 These studies provide mechanistic links between
innate regulation via TLR signaling, tumor immunosuppres-
sion, hypoxia and metabolic dysregulation.

TLR-MEDIATED METABOLIC SWITCH IS CRITICAL FOR

THE ACTIVATION AND IMMUNOGENIC FUNCTION OF

MACROPHAGES AND DCS

Metabolic reprograming to quickly produce ATP and energy is
required for infectious pathogen-mediated activation of macro-
phages and DCs. It is well established that stimulation with
TLR ligands from pathogens, such as LPS, can promote a
metabolic switch from OXPHOS to glycolysis in macrophages,
resulting in cell activation and development of M1 macro-
phages with inflammatory phenotypes and effector
functions.7,30–33 Similarly, TLR-induced activated DCs have

increased glycolysis and reduced OXPHOS.7,30,34,35 The TLR-
mediated metabolic switch to glycolysis is also required for DC
maturation, allowing them to acquire immunogenic functions
and survive after activation.7,34,35 Several key molecules are
involved in the activation of macrophages and DCs. Upon
stimulation by LPS via TLR4, increased production of iNOS
and nitric oxide are important for inhibition of the molecular
processes toward OXPHOS.7,106 In addition, the AKT–mTOR–
HIF-1α pathway controls metabolic programming and glyco-
lysis during TLR-mediated activation of macrophages and
DCs.107,108 Furthermore, recent studies have suggested that
TLR-driven early glycolytic programming occurs through rapid
phosphorylation and activation of the kinases AKT, TBK1 and
IKKε, which promote the activity of glycolytic enzymes and
de novo synthesis of fatty acids to support DC activation.30,109

In addition to the promotion of glycolysis for cell activation,
different TLRs may have diverse biological effects on metabolic
regulation in DCs and macrophages. More recent studies have
shown that TLR7 and TLR9 signaling can trigger both
glycolysis and lipid metabolism in plasmacytoid dendritic cells
(PDCs).110,111 In mouse PDCs, TLR9 promotes late glycolysis

Table 2 TLR-mediated metabolic reprogramming in different types of cells

TLRs Ligands Metabolic reprogramming and functional alterations References

TLR1 Pam3CSK4;
Triacryl lipopeptide

Treg cells: promote glycolysis, but impair their suppression; increase Glut1 and HK2 expression
as well as lactate production

90

TLR2 Heat-killed PA
Pam3CSK4

DCs: induce a rapid increase in glycolysis and glucose consumption; promote glycolysis-fueled
synthesis of fatty acids and DC activation.
Macrophages: activate the transcription factor CREB to regulate IL-10 production and promote
glycolysis as well as decrease the TCA and oxidative phosphorylation; upregulate MCT-4 for
macrophage activation.
Treg cells: promote glycolysis, but impair their suppression. increased expression of Glut1 and
HK2 as well as lactate production; lose the Treg suppressive phenotype in the presence of TCR
stimulation and suppress Foxp3 expression

30,90,113,114

TLR3 Poly (A:U); Poly(I:C);
dsRNA

Head and neck carcinoma cells: increase glycolysis and lactate production; promote amino-acid
synthesis, HIF-1α activity and PPP; and decrease the level of TCA

42

TLR4 LPS DCs: induce a rapid increase in glycolysis, glucose consumption andiNOS as well as promote
fatty-acid synthesis and FAO; decrease OXPHOS; promote DC activation.
Macrophages: activate the transcription factor CREB to regulate IL-10 production and promote
glycolysis; decrease the TCA and oxidative phosphorylation; upregulate MCT-4 for macrophage
activation

30,34,109,113,116

TLR7 Imiquimod and
Loxoribine

PDCs: promote early glycolysis in human blood-derived PDC; increase ECAR and Glut1
expression.
Tumor cells and tumor-draining lymphocytes: increase the metabolite IDO

103,111

TLR8 Poly-G3 Cancer cells: decrease the level of cAMP and prevent tumor-induced senescence in T cells 38

TLR9 CpG Breast cancer: regulate the levels of trace elements and lipid peroxidation during oxidative
damage.
DCs: induce a rapid increase in glycolysis, glucose consumption and iNOS; promote fatty-acid
synthesis and FAO; decrease OXPHOS; promote DC activation.
PDCs: promote late glycolysis (after 24 h) in mouse bone marrow-derived PDC via a type I IFN/
IFNAR loop and PDC activation; induce FAO coupled with OXPHOS to generate ATP in a PPARα-
dependent mechanism; activate mTORC1

43,110,111

Abbreviations: CREB, cAMP response element binding; DC, dendritic cell; EACR, extracellular acid cation rate; FAO, Fatty acid β-oxidation; HIF, hypoxia-inducible
transcription factor; HK2, hexokinase 2; IDO, indoleamine 2, 3-dioxygenase; IFN, interferon; IFNAR, The interferon-α receptor; IL, interleukin; iNOS, inducible nitric
oxide synthase; LPS, lipopolysaccharide; OXPHOS, oxidative phosphorylation; PDC, plasmacytoid dendritic cell; PPP, Pentose phosphate pathway; TCA, tricarboxylic
acid; TLR, Toll-like receptor; Treg, regulatory T cell.
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via a type I IFN/IFNαR loop, resulting in increased fatty-acid
synthesis and cholesterol metabolism.110,111 In human PDCs,
TLR7 signaling triggers early glycolysis and increased ECAR,
which occurs through HIF1α-mediated enhanced expression
and the activity of glucose transporters and glycolytic
enzymes.110 Furthermore, although stimulation with TLR2
and TLR4 ligands can promote metabolic reprogramming to
glycolysis in macrophages, and LPS stimulation leads to a
decrease in OXPHOS, whereas stimulation with Pam3CysSK4
can increase the oxygen consumption and mitochondrial
enzyme activity involved in the upregulation of both glycolysis
and OXPHOS.112,113 These studies indicate that TLR signaling
is a critical trigger to control the innate immune cell fate and
their functions (Table 2).

TLR-MEDIATED METABOLIC SWITCH REGULATES

T-CELL SUBSET DEVELOPMENT AND FUNCTION

TLR signaling is also important for regulating the subset
development, differentiation and functions of T cells.46,47

TLR2 signaling can directly enhance both proliferation and
IL-17 production by Th17 cells and promote the pathogenesis
of EAE.46 Activation of TLR2 can also promote and generate
efficient memory T cells by producing more IFN-γ and
granzyme B and enhancing the cytotoxic activity of antigen-
activated CD8+ T cells.114 TLR2 signaling in DCs or Treg cells
can reverse mouse Treg suppression.115,116 The TLR3 ligand
Poly (I:C) and TLR9 ligand CpG can stimulate Th1 responses
and mediate potent antitumor activity.47 TLR4 activation in
CD4+ T cells is essential for the proliferation and survival of
Th1 and Th17 cells and stimulates IL-17 production.47,117

Activation of TLR4 in CD4+CD25+ Treg cells by LPS can also
directly induce Treg cell activation and promote cellular
survival and proliferation.118 More recent studies have identi-
fied that TLR7 signaling activation in T cells can inhibit both
Th17 and Th1 cell differentiation and function, but through
different molecular mechanisms. These studies further revealed
that inhibition of STAT3 signaling is responsible for TLR7-
mediated suppression of Th17 cells, which is reciprocally
regulated by the induction of SOCS3 and SOCS5.48 In addition,
human TLR8 signaling directly reverses the suppressive func-
tions of naturally occurring CD4+CD25+ Treg cells as well as
tumor-derived CD4+, CD8+ and γδ Treg cells.49–53 Further-
more, various TLR signaling promotes chemoattraction and
generation of Th17 cells in the tumor microenvironment
through tumor cells and tumor-derived fibroblasts.37 There-
fore, precisely dissecting the unique signaling pathways
involved in the regulation of T-cell subsets by different TLRs
will be important for the development of TLR-based tumor
immunotherapy.

Although increasing and new evidence suggests that energy
metabolism directs the development and functions of
T cells,15–19 very limited information is known about the
causative relationship between innate regulation through TLR
signaling and T-cell metabolism and functionality (Table 2).
Given that TLR signaling is also important for regulating the
biology and functions of T cells, an improved understanding of

the molecular basis of their crosstalk is urgent for the field of
tumor immunotherapy. It has been shown that activation of
TLR2 and TLR7 signaling promotes the production of IFN-γ
by murine CD8+ T cells, which is mechanistically dependent
on activating PI3K–AKT–mTOR signaling. This molecular
action requires energy support from mitochondrial respiration
rather than glycolysis mediated by TLR signaling.119 However,
a more recent study suggested that TLR1 and TLR2 signaling
activation in mouse Treg cells increases Treg glycolysis and
proliferation, but reduces their suppressive capacity.90 TLR1/2-
mediated signaling in Treg cells is also involved in the
activation of PI3K–AKT–mTOR signaling and enhances
expression of Glut1 and the glycolytic enzyme hexokinase 2
(HK2) in Treg cells.90 Studies from our group have demon-
strated that TLR8 signaling directly reverses the suppressive
functions of different types of human Treg cells, including
CD4+, CD8+ and γδ Treg cells.49–53 TLR8-mediated reversal of
Treg suppression significantly enhances antitumor immunity
for tumor immunotherapy.38,49 We have also shown that
tumor-derived cAMP can induce naive and effector T-cell
senescence, resulting in impaired antitumor immunity.38 In
addition, TLR8 signaling suppresses tumor cell metabolism,
resulting in downregulated cAMP levels in both tumor cells
and senescent T cells.38 Given that both glucose and lipid
metabolism are required for Treg suppression89 and that cAMP
is a key component of Treg cell suppression,73 we propose that
TLR8 signaling in human Treg cells could also regulate Treg
metabolism to inhibit Treg-suppressive activity. Future studies
will facilitate our understanding of the molecular mechanisms
that are involved in TLR8 signaling-based immunotherapy
targeting both tumors and Treg cell metabolic reprogramming.

RETHINKING TLR-BASED TUMOR IMMUNOTHERAPY BY

TARGETING METABOLIC REPROGRAMMING IN THE

TUMOR MICROENVIRONMENT

Although several TLR agonists have been developed as immu-
notherapeutic drugs for use in cancer treatments, the results
from clinical trials thus far have been discouraging.39,40,120 The
varied effects mediated by TLR agonists on different cell types
in the tumor microenvironment might be a reason for the
insufficient antitumor effects that were found during patient
treatment. Therefore, defining the unique molecular signaling/
mechanism(s) induced by each TLR on different cell compo-
nents is essential for improving TLR-mediated antitumor
immunity. Recently, significant progress has been made in
understanding the importance of metabolic reprogramming/
switching for both tumor cells and immune cells in the tumor
microenvironment, especially in different types of T cells.
Furthermore, recently, many of the molecular interactions
involved in TLR signaling and metabolic regulations have been
identified and have been focused on by research groups. The
updated information and knowledge of cellular metabolism
and TLR research not only markedly facilitates our under-
standing of human immunity under both physiological and
pathological conditions but also provides insights for us to
rethink the novel and effective TLR-mediated tumor
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immunotherapeutic strategies that target metabolic reprogram-
ming of both tumor and immune cells within the tumor
microenvironment. The following key issues should be recon-
sidered when we design TLR-based immunotherapy. (a)
Understand the dual effects on tumor metabolism mediated
by TLRs. We first need to reconsider the fact that TLRs are a
‘double-edged sword’ with both pro-tumorigenic and antitu-
mor effects.36–38 We should consider that some TLR signaling
can directly promote tumor growth and metastasis by regulat-
ing their metabolic reprogramming.42,43 In addition, TLR
signaling can regulate metabolites produced by tumor
cells, such as cAMP and IDO, which are potent immune
suppressors, maintaining the tumor-suppressive
microenvironment.63–65 Therefore, identification of selective
TLR agonists that specifically inhibit tumor metabolism and/or
regulate tumor-derived metabolites is needed for TLR-based
tumor vaccine/therapy. (b) Metabolically control the balance
between Treg and effector T cells via suitable TLR signaling in
the tumor microenvironment. It has become clear that a
significant challenge in the design of novel cancer immu-
notherapies is to develop effective strategies for breaking the
immune tolerance induced by Treg cells and regenerating the
balance between tumor-specific effector T cells and Treg cells
in the tumor microenvironment.121 An improved understand-
ing of the distinct metabolic processes of Treg cells and effector
T cells will provide alternative and more specific targets for
controlling Treg-induced immune suppression by regulating
T-cell metabolism. In addition, recent studies have shown that
certain types of TLR agonists, such as TLR1/2 and TLR8, can
reverse Treg suppression by regulating Treg metabolism.49–53,90

These studies strongly support the concept that TLR-mediated
reprogramming of T-cell metabolism is a novel and feasible
strategy for tumor immunotherapy. (c) Functional reconstitu-
tion of macrophages and DCs in the tumor microenvironment
via TLR-mediated metabolic reprogramming. Effector func-
tional reconstitution of macrophages and DCs in tumor sites
via metabolic reprogramming through TLRs is also a potential
future therapeutic approach. TAMs and tolerogenic DCs are
critical cell components within the tumor-suppressive micro-
environment. Both TAMs and tolerogenic DCs have distinct
metabolic profiles from immunogenic macrophages and
DCs.10–14 Developing effective strategies using the TLR-
mediated metabolic switch to promote the activation and
immunogenic functions of macrophage and DCs in the tumor
microenvironment are also essential for tumor immunother-
apy. (d) Select effective combinations of other therapeutic
strategies with a TLR-based cancer treatment. It has been
shown that TLR agonists that are used as a single type of
antitumor drug have yielded limited success in clinical trials.40

Combined use of TLR agonists with other therapeutic strategies
should be considered in the future for cancer treatments. In
support of this concept, checkpoint blockage therapy with
PD1/PDL1 and CTLA4 can change the metabolic balance
between tumors and TILs and enhance tumor
immunotherapy.29,122 Furthermore, recent studies have sug-
gested that TLR8 signaling in tumor cells significantly

downregulates tumor-derived metabolite cAMP, which induces
T-cell senescence and immune suppression.38,44 Combined
application of the TLR8 agonist and an adoptive transfer of
T-cell therapy markedly prevents tumor-specific T-cell senes-
cence and promotes their antitumor efficacy in vivo.38,44

Therefore, we propose that TLR-mediated metabolic repro-
gramming of the tumor microenvironment combined with
adoptive T-cell therapy and/or checkpoint blockade therapy
that targets both tumor and T cells and creates an effective
condition favoring and enhancing antitumor immune
responses should be an emerging concept for cancer
immunotherapy.6,29

CONCLUSIONS

The tumor-suppressive microenvironments created by malig-
nant tumors are a major obstacle for effective antitumor
immunity and successful tumor immunotherapy. Cellular
energy metabolism controls the fate and biological functions
of both malignant tumor cells and tumor-infiltrating immune
cells in the tumor microenvironment. The recently improved
understanding of the metabolic profiles of different cell
components, especially T-cell subsets, facilitates the develop-
ment of novel strategies to reprogram cell metabolism for
tumor immunotherapy. TLRs are widely expressed in both
tumor cells and tumor-infiltrating immune cells and are
involved in the regulation of tumor pathogenesis and anti-
tumor immune responses. Increasing evidence strongly indi-
cates that TLR signaling directly crosstalks with the molecular
processes of cell metabolism in tumor cells and/or different
subsets of immune cells. This more recent information will
facilitate a rethinking of the novel role and therapeutic
potential of TLR signaling in the tumor microenvironment.
A better understanding of the mechanistic regulation of TLR
signaling and metabolism in different cell components in the
tumor-suppressive microenvironment should open new ave-
nues for the development of novel strategies via TLR-mediated
metabolic reprogramming for cancer immunotherapy.
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