Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A protocol for quantizing total bacterial 16S rDNA in plasma as a marker of microbial translocation in vivo

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Honda K, Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol 2009; 2: 187–196.

    Article  CAS  Google Scholar 

  2. Zigmond E, Jung S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol 2013; 34: 162–168.

    Article  CAS  Google Scholar 

  3. Jiang W, Younes SA, Funderburg NT, Mudd JC, Espinosa E, Davenport MP et al. Cycling memory CD4+ T cells in HIV disease have a diverse T cell receptor repertoire and a phenotype consistent with bystander activation. J Virol 2014; 88: 5369–5380.

    Article  CAS  Google Scholar 

  4. Farache J, Zigmond E, Shakhar G, Jung S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol Cell Biol 2013; 91: 232–239.

    Article  CAS  Google Scholar 

  5. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14: 141–153.

    Article  CAS  Google Scholar 

  6. Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol (Bp) 2016; 6: 253–271.

    Article  CAS  Google Scholar 

  7. Zhang L, Luo Z, Sieg SF, Funderburg NT, Yu X, Fu P et al. Plasmacytoid dendritic cells mediate synergistic effects of HIV and lipopolysaccharide on CD27+ IgD- memory B cell apoptosis. J Virol 2014; 88: 11430–11441.

    Article  Google Scholar 

  8. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2009; 199: 1177–1185.

    Article  CAS  Google Scholar 

  9. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12: 1365–1371.

    Article  CAS  Google Scholar 

  10. Sandler NG, Koh C, Roque A, Eccleston JL, Siegel RB, Demino M et al. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 2011; 141: 1220–1230.

    Article  Google Scholar 

  11. Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Da Silva NF, Khanolkar M et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E740–E747.

    Article  CAS  Google Scholar 

  12. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011; 34: 392–397.

    Article  CAS  Google Scholar 

  13. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol 1985; 183: 1–12.

    Article  CAS  Google Scholar 

  14. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 1985; 82: 6955–6959.

    Article  CAS  Google Scholar 

  15. Luo Z, Ma L, Zhang L, Martin L, Wan Z, Warth S et al. Key differences in B cell activation patterns and immune correlates among treated HIV-infected patients versus healthy controls following influenza vaccination. Vaccine 2016; 34: 1945–1955.

    Article  CAS  Google Scholar 

  16. Taylor SNBL, Ebeling M, Wagner CL. Intestinal permeability in preterm infants by feeding type: mother's milk versus formula. Breastfeed Med 2009; 4: 11–15.

    Article  Google Scholar 

  17. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 2014; 388: 203–210.

    Article  CAS  Google Scholar 

  18. Serrano-Villar S, Sainz T, Ma ZM, Utay NS, Chun TW, Mann S et al. Effects of combined CCR5/integrase inhibitors-based regimen on mucosal immunity in HIV-infected patients naive to antiretroviral therapy: a pilot randomized trial. PLoS Pathog 2016; 12: e1005381.

    Article  Google Scholar 

  19. Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015; 421: 44–53.

    Article  CAS  Google Scholar 

  20. Bjarnason I, Peters TJ, Wise RJ. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1984; 1: 179–182.

    Article  CAS  Google Scholar 

  21. Peeters M, Hiele M, Ghoos Y, Huysmans V, Geboes K, Vantrappen G et al. Test conditions greatly influence permeation of water soluble molecules through the intestinal mucosa: need for standardisation. Gut 1994; 35: 1404–1408.

    Article  CAS  Google Scholar 

  22. Ruijter JM, Ruiz Villalba A, Hellemans J, Untergasser A, van den Hoff MJ. Removal of between-run variation in a multi-plate qPCR experiment. Biomol Detect Quantif 2015; 5: 10–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants AI091526 and AI128864 and the Medical Research Service at the Ralph H. Johnson VA Medical Center Merit grant VA CSRD MERIT (CX001211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, W. A protocol for quantizing total bacterial 16S rDNA in plasma as a marker of microbial translocation in vivo . Cell Mol Immunol 15, 937–939 (2018). https://doi.org/10.1038/cmi.2018.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2018.3

Keywords

  • Microbial Translocation
  • Intestinal Fatty Acid Binding Protein (I-FABP)
  • Catalog Number
  • Microbial Production Systems
  • Collection Tube

This article is cited by

Search

Quick links