Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Caspases control antiviral innate immunity

Abstract

Caspases are a family of cysteine proteases whose functions have been scrutinized intensively in recent years. Beyond their established roles in programmed cell death and inflammatory response, some caspases are also fundamental players in antiviral immunity by fine-tuning the levels of antiviral signaling adapters and cytokines, such as type I interferons, which serves as a major, sophisticated weapon against viruses. Viral infections can result in inflammasome activation and the initiation of cell death, including apoptosis and pyroptosis, and multiple caspases are significantly involved in these processes. This review will focus on the cutting-edge discoveries regarding the multifaceted roles of caspases in antiviral innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Takeuchi O, Akira S . Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820.

    CAS  PubMed  Google Scholar 

  2. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009; 30: 556–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 2005; 175: 2851–2858.

    Article  CAS  PubMed  Google Scholar 

  4. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  5. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 2015; 161: 1293–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL . DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 2012; 1: e00047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xia P, Wang S, Ye B, Du Y, Huang G, Zhu P et al. Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol 2015; 16: 366–375.

    Article  CAS  PubMed  Google Scholar 

  8. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad USA 2013; 110: 2969–2974.

    Article  CAS  Google Scholar 

  9. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 2013; 498: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10: 266–272.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES . AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458: 509–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373–384.

    Article  CAS  PubMed  Google Scholar 

  14. Nie Y, Wang YY . Innate immune responses to DNA viruses. Protein Cell 2013; 4: 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pichlmair A, Reis e Sousa C . Innate recognition of viruses. Immunity 2007; 27: 370–383.

    Article  CAS  PubMed  Google Scholar 

  16. Ramos HJ, Gale M Jr. . RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009; 323: 1057–1060.

    Article  CAS  PubMed  Google Scholar 

  18. Jordan R, Wang L, Graczyk TM, Block TM, Romano PR . Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 2002; 76: 9588–9599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McIlwain DR, Berger T, Mak TW . Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013; 5: a008656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shalini S, Dorstyn L, Dawar S, Kumar S . Old, new and emerging functions of caspases. Cell Death Differ 2015; 22: 526–539.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S . Caspase function in programmed cell death. Cell Death Differ 2007; 14: 32–43.

    Article  CAS  PubMed  Google Scholar 

  22. Latz E, Xiao TS, Stutz A . Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13: 397–411.

    Article  CAS  PubMed  Google Scholar 

  23. Lamkanfi M, Dixit VM . Mechanisms and functions of inflammasomes. Cell 2014; 157: 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  24. Man SM, Kanneganti TD . Regulation of inflammasome activation. Immunol Rev 2015; 265: 6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Degterev A, Boyce M, Yuan J . A decade of caspases. Oncogene 2003; 22: 8543–8567.

    Article  CAS  PubMed  Google Scholar 

  26. Fuentes-Prior P, Salvesen GS . The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004; 384 (Pt 2): 201–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  CAS  PubMed  Google Scholar 

  28. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW . Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002; 9: 423–432.

    Article  CAS  PubMed  Google Scholar 

  29. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Zhu H, Xu CJ, Yuan J . Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  CAS  PubMed  Google Scholar 

  31. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blander JM . A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14: 601–618.

    Article  CAS  PubMed  Google Scholar 

  33. Brenner D, Blaser H, Mak TW . Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 2015; 15: 362–374.

    Article  CAS  PubMed  Google Scholar 

  34. Kanneganti TD . Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 2010; 10: 688–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 2006; 281: 36560–36568.

    Article  CAS  PubMed  Google Scholar 

  36. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 2006; 440: 233–236.

    Article  CAS  PubMed  Google Scholar 

  37. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A . Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 2009; 206: 79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas PG, Dash P, Aldridge JR Jr., Ellebedy AH, Reynolds C, Funk AJ et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009; 30: 566–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 2010; 11: 63–69.

    Article  CAS  PubMed  Google Scholar 

  40. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA . Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013; 341: 1250–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013; 341: 1246–1249.

    Article  CAS  PubMed  Google Scholar 

  42. Vigano E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A . Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015; 6: 8761.

    Article  CAS  PubMed  Google Scholar 

  43. Broz P, Dixit VM . Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16: 407–420.

    Article  CAS  PubMed  Google Scholar 

  44. Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 2009; 31: 84–98.

    Article  CAS  PubMed  Google Scholar 

  45. Fink SL, Bergsbaken T, Cookson BT . Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci USA 2008; 105: 4312–4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    Article  CAS  PubMed  Google Scholar 

  47. Rintahaka J, Wiik D, Kovanen PE, Alenius H, Matikainen S . Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J Immunol 2008; 180: 1749–1757.

    Article  CAS  PubMed  Google Scholar 

  48. Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber F, Bowie AG et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J Virol 2005; 79: 12944–12951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 2005; 175: 5260–5268.

    Article  CAS  PubMed  Google Scholar 

  50. Fredericksen BL, Gale M Jr. . West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol 2006; 80: 2913–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994–997.

    Article  PubMed  Google Scholar 

  52. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105.

    Article  CAS  PubMed  Google Scholar 

  53. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006; 314: 997–1001.

    Article  CAS  PubMed  Google Scholar 

  54. Liu P, Jamaluddin M, Li K, Garofalo RP, Casola A, Brasier AR . Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 2007; 81: 1401–1411.

    Article  CAS  PubMed  Google Scholar 

  55. Mikkelsen SS, Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M et al. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem 2009; 284: 10774–10782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010; 11: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ekchariyawat P, Hamel R, Bernard E, Wichit S, Surasombatpattana P, Talignani L et al. Inflammasome signaling pathways exert antiviral effect against Chikungunya virus in human dermal fibroblasts. Infect Genet Evol 2015; 32: 401–408.

    Article  CAS  PubMed  Google Scholar 

  58. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N et al. Biology of Zika virus infection in human skin cells. J Virol 2015; 89: 8880–8896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 2011; 9: 363–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Tengchuan J et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci USA 2013; 110: E4571–E4580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Doitsh G, Galloway NLK, Geng X, Yang ZY, Monroe KM, Zepeda O et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505: 509–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 2014; 343: 428–432.

    Article  CAS  PubMed  Google Scholar 

  63. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 2005; 280: 5571–5580.

    Article  CAS  PubMed  Google Scholar 

  64. Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 2007; 179: 4711–4720.

    Article  CAS  PubMed  Google Scholar 

  65. Ichinohe T, Pang IK, Iwasaki A . Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 2010; 11: 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Delaloye J, Roger T, Steiner-Tardivel QG, Le Roy D, Knaup Reymond M, Akira S et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog 2009; 5: e1000480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O'Rourke K et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 2010; 107: 9771–9776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cookson BT, Brennan MA . Pro-inflammatory programmed cell death. Trends Microbiol 2001; 9: 113–114.

    Article  CAS  PubMed  Google Scholar 

  69. Jorgensen I, Miao EA . Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2015; 265: 130–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zychlinsky A, Prevost MC, Sansonetti PJ . Shigella flexneri induces apoptosis in infected macrophages. Nature 1992; 358: 167–169.

    Article  CAS  PubMed  Google Scholar 

  71. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11: 1136–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526: 666–671.

    Article  CAS  PubMed  Google Scholar 

  73. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526: 660–665.

    Article  CAS  PubMed  Google Scholar 

  74. Agard NJ, Maltby D, Wells JA . Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics 2010; 9: 880–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malireddi RKS, Ippagunta S, Lamkanfi M, Kanneganti TD . Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol 2010; 185: 3127–3130.

    Article  CAS  PubMed  Google Scholar 

  76. Knodler LA, Crowley SM, Sham HP, Yang HJ, Wrande M, Ma CX et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 2014; 16: 249–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, Zak DE et al. Caspase-11 protects against bacteria that escape the vacuole. Science 2013; 339: 975–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11: 1136–U94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sellin ME, Muller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict salmonella replication in the intestinal mucosa. Cell Host Microbe 2014; 16: 237–248.

    Article  CAS  PubMed  Google Scholar 

  80. Man SM, Kanneganti TD . Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2016; 16: 7–21.

    Article  CAS  PubMed  Google Scholar 

  81. Shi JJ, Zhao Y, Wang YP, Gao WQ, Ding JJ, Li P et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514: 187–192.

    Article  CAS  PubMed  Google Scholar 

  82. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479: 117–U46.

    Article  CAS  PubMed  Google Scholar 

  83. Rongvaux A, Jackson R, Harman CCD, Li T, West AP, de Zoete MR et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014; 159: 1563–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 2014; 159: 1549–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai X, Chiu YH, Chen ZJ . The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014; 54: 289–296.

    Article  CAS  PubMed  Google Scholar 

  86. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014; 505: 691–695.

    Article  CAS  PubMed  Google Scholar 

  87. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ . Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013; 341: 1390–1394.

    Article  CAS  PubMed  Google Scholar 

  88. Ishikawa H, Ma Z, Barber GN . STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461: 788–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lam E, Stein S, Falck-Pedersen E . Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J Virol 2014; 88: 974–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sunthamala N, Thierry F, Teissier S, Pientong C, Kongyingyoes B, Tangsiriwatthana T et al. E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-kappa transcription in keratinocytes. PloS One 2014; 9: e91473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paijo J, Doring M, Spanier J, Grabski E, Nooruzzaman M, Schmidt T et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog 2016; 12: e1005546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu MM, Shu HB . Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cell Mol Immunol 2017; 14: 331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu J, Chen ZJ . Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 2014; 32: 461–488.

    Article  CAS  PubMed  Google Scholar 

  94. Chen H, Sun H, You F, Sun W, Zhou X, Chen L et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011; 147: 436–446.

    Article  CAS  PubMed  Google Scholar 

  95. Christensen MH, Paludan SR . Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 2017; 14: 4–13.

    Article  CAS  PubMed  Google Scholar 

  96. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015; 520: 553–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O, Mahrus S et al. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol Cell Proteomics 2013; 12: 813–824.

    Article  CAS  PubMed  Google Scholar 

  98. Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 2017; 46: 393–404.

    Article  CAS  PubMed  Google Scholar 

  99. Tao J, Zhang XW, Jin J, Du XX, Lian T, Yang J et al. Non-specific DNA binding of cGAS N-terminus promotes cGAS activation. J Immunol 2017; 198: 3627–3636.

    Article  CAS  PubMed  Google Scholar 

  100. Takahashi K, Kawai T, Kumar H, Sato S, Yonehara S, Akira S . Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J Immunol 2006; 176: 4520–4524.

    Article  CAS  PubMed  Google Scholar 

  101. Rajput A, Kovalenko A, Bogdanov K, Yang SH, Kang TB, Kim JC et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 2011; 34: 340–351.

    CAS  PubMed  Google Scholar 

  102. Lin Y, Devin A, Rodriguez Y, Liu ZG . Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999; 13: 2514–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 2007; 19: 2056–2067.

    Article  CAS  PubMed  Google Scholar 

  104. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 2011; 13: 1437–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sears N, Sen GC, Stark GR, Chattopadhyay S . Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation. J Biol Chem 2011; 286: 33037–33044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Staal J, Bekaert T, Beyaert R . Regulation of NF-kappaB signaling by caspases and MALT1 paracaspase. Cell Res 2011; 21: 40–54.

    Article  CAS  PubMed  Google Scholar 

  107. Holm GH, Zurney J, Tumilasci V, Leveille S, Danthi P, Hiscott J et al. Retinoic acid-inducible gene-I and interferon-beta promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J Biol Chem 2007; 282: 21953–21961.

    Article  CAS  PubMed  Google Scholar 

  108. Lei Y, Moore CB, Liesman RM, O'Connor BP, Bergstralh DT, Chen ZJ et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One 2009; 4: e5466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 2010; 29: 1762–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yu CY, Chiang RL, Chang TH, Liao CL, Lin YL . The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases. J Virol 2010; 84: 2421–2431.

    Article  CAS  PubMed  Google Scholar 

  111. Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 2009; 119: 2399–2411.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li HM, Fujikura D, Harada T, Uehara J, Kawai T, Akira S et al. IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death Differ 2009; 16: 1615–1621.

    Article  CAS  PubMed  Google Scholar 

  113. Buskiewicz IA, Koenig A, Huber SA, Budd RC . Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virol 2012; 7: 1221–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ et al. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J Immunol 2014; 192: 1171–1183.

    Article  CAS  PubMed  Google Scholar 

  115. Drahos J, Racaniello VR . Cleavage of IPS-1 in cells infected with human rhinovirus. J Virol 2009; 83: 11581–11587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Madan V, Castello A, Carrasco L . Viroporins from RNA viruses induce caspase-dependent apoptosis. Cell Microbiol 2008; 10: 437–451.

    CAS  PubMed  Google Scholar 

  117. Wang P, Arjona A, Zhang Y, Sultana H, Dai J, Yang L et al. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 2010; 11: 912–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Morizot A, Saleh M . Non-apoptotic functions of cell death effectors in inflammation and innate immunity. Microbes Infect 2012; 14: 1241–1253.

    Article  CAS  PubMed  Google Scholar 

  119. Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 2004; 21: 877–889.

    Article  CAS  PubMed  Google Scholar 

  120. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P . Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem 2004; 279: 24785–24793.

    Article  CAS  PubMed  Google Scholar 

  121. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C . Vital functions for lethal caspases. Oncogene 2005; 24: 5137–5148.

    Article  CAS  PubMed  Google Scholar 

  122. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002; 419: 395–399.

    Article  CAS  PubMed  Google Scholar 

  123. Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 2005; 307: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  124. Lemmers B, Salmena L, Bidere N, Su H, Matysiak-Zablocki E, Murakami K et al. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J Biol Chem 2007; 282: 7416–7423.

    Article  CAS  PubMed  Google Scholar 

  125. Hu WH, Johnson H, Shu HB . Activation of NF-kappaB by FADD, casper, and caspase-8. J Biol Chem 2000; 275: 10838–10844.

    Article  CAS  PubMed  Google Scholar 

  126. Maelfait J, Vercammen E, Janssens S, Schotte P, Haegman M, Magez S et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J Exp Med 2008; 205: 1967–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weber A, Kirejczyk Z, Besch R, Potthoff S, Leverkus M, Hacker G . Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ 2010; 17: 942–951.

    Article  CAS  PubMed  Google Scholar 

  128. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1: 489–495.

    Article  CAS  PubMed  Google Scholar 

  129. Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D . Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 2013; 38: 27–40.

    Article  CAS  PubMed  Google Scholar 

  130. Allam R, Lawlor KE, Yu EC, Mildenhall AL, Moujalled DM, Lewis RS et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 2014; 15: 982–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cuda CM, Misharin AV, Gierut AK, Saber R, Haines GK, Hutcheson J et al. Caspase-8 acts as a molecular rheostat to limit RIPK1-and MyD88-mediated dendritic cell activation. J Immunol 2014; 192: 5548–5560.

    Article  CAS  PubMed  Google Scholar 

  132. Kovalenko A, Kim JC, Kang TB, Rajput A, Bogdanov K, Dittrich-Breiholz O et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 2009; 206: 2161–2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98–103.

    Article  CAS  PubMed  Google Scholar 

  134. Kaufman RJ . Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999; 13: 1211–1233.

    Article  CAS  PubMed  Google Scholar 

  135. Bitko V, Barik S . An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 2001; 80: 441–454.

    Article  CAS  PubMed  Google Scholar 

  136. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM et al. Coupling endoplasmic reticulum stress to the cell death program—mechanism of caspase activation. J Biol Chem 2001; 276: 33869–33874.

    Article  CAS  PubMed  Google Scholar 

  137. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Jiang Laboratory for helpful discussions. We apologize for being unable to include the important contributions from all researchers in the field due to space limitations. Recent and ongoing studies performed in the Jiang Laboratory are supported by grants from the Chinese Ministry of Science and Technology (2014CB542600 and 2015CC040097) and the China Natural Science Foundation (31230023, 91129000 and 81621001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfan Jiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ning, X. & Jiang, Z. Caspases control antiviral innate immunity. Cell Mol Immunol 14, 736–747 (2017). https://doi.org/10.1038/cmi.2017.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.44

Keywords

This article is cited by

Search

Quick links