Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

Predictive immune biomarkers: an unattainable chimera?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168: 707–723.

    Article  CAS  Google Scholar 

  2. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372: 2509–2520.

    Article  CAS  Google Scholar 

  3. Bates SE. Refining immunotherapy approvals. Clin Cancer Res. 2017; 23: 4948–4949.

    Article  Google Scholar 

  4. Mehnert JM, Monjazeb AM, Beerthuijzen JMT, Collyar D, Rubinstein L, Harris LN. The challenge for development of valuable immuno-oncology biomarkers. Clin Cancer Res 2017; 23: 4970–4979.

    Article  CAS  Google Scholar 

  5. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011; 9: 204.

    Article  CAS  Google Scholar 

  6. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515: 568–571.

    Article  CAS  Google Scholar 

  7. Zhang Y, Chen L. Classification of advanced human cancers based on tumor immunity in the microenvironment (TIME) for cancer immunotherapy. JAMA Oncol 2016; 2: 1403–1404.

    Article  Google Scholar 

  8. Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternès N, Jegou S et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun 2017; 8: 592.

    Article  CAS  Google Scholar 

  9. Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Semeraro M, Jégou S et al. Immunophenotyping of stage III melanoma reveals parameters associated with patient prognosis. J Invest Dermatol 2016; 136: 994–1001.

    Article  CAS  Google Scholar 

  10. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM et al. Systemic immunity is required for effective cancer immunotherapy. Cell 2017; 168: 487–502.

    Article  CAS  Google Scholar 

  11. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017; 170: 1120–1133.

    Article  CAS  Google Scholar 

  12. Lemery S, Keegan P, Pazdur R, First FDA. Approval agnostic of cancer site—when a biomarker defines the indication. N Engl J Med 2017; 377: 1409–1412.

    Article  Google Scholar 

  13. Killock D. Targeted therapy: ARIEL3—broad benefit of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol 2017; 14: 713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Scala.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trotta, A., Pacelli, R. & Scala, S. Predictive immune biomarkers: an unattainable chimera?. Cell Mol Immunol 15, 740–742 (2018). https://doi.org/10.1038/cmi.2017.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.162

Keywords

Search

Quick links