Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-33 induces immunosuppressive neutrophils via a type 2 innate lymphoid cell/IL-13/STAT6 axis and protects the liver against injury in LCMV infection-induced viral hepatitis

Abstract

Viral hepatitis is still a public health problem affecting several million people around the world. Neutrophils are polymorphonuclear cells that have a critical role in antibacterial infection. However, the role of neutrophils in viral infection is not fully understood. By using a mouse model of lymphocytic choriomeningitis virus infection-induced viral hepatitis, we observed increased neutrophil recruitment in the liver accompanied by enhanced CD8+ T-cell responses. Liver neutrophils expressed high levels of immunomodulatory cytokines, such as C-X-C chemokine ligand 2, arginase-1, inducible nitric oxide synthase and interleukin (IL)-10, demonstrating immunosuppressive properties. Depletion of neutrophils in vivo by a neutralizing antibody resulted in the exacerbation of liver injury and the promotion of T-cell responses at the immune contraction stage. IL-33 significantly induced neutrophil recruitment in the liver and attenuated liver injury by limiting effector T-cell accumulation. Mechanistically, we found that IL-33 promoted the expression of arginase-1 in neutrophils through the type 2 innate lymphoid cell (ILC2)-derived IL-13. Additionally, IL-13 increased the inhibitory effect of neutrophils on CD8+ T-cell proliferation in vitro, partially through arginase-1. Finally, we found that IL-13 induced arginase-1 expression, depending on signal transducer and activator of transcription factor 6 (STAT6) signaling. Therefore, IL-33 induced immunosuppressive neutrophils via an ILC2/IL-13/STAT6 axis. Collectively, our findings shed new light on the mechanisms associated with IL-33-triggered neutrophils in the liver and suggest potential targets for therapeutic investigation in viral hepatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Farci P, Alter HJ, Shimoda A, Govindarajan S, Cheung LC, Melpolder JC et al. Hepatitis C virus-associated fulminant hepatic failure. N Engl J Med 1996; 335: 631–634.

    CAS  PubMed  Google Scholar 

  2. Rehermann B, Bertoletti A. Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology 2015; 61: 712–721.

    CAS  PubMed  Google Scholar 

  3. Shin EC, Sung PS, Park SH. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 2016; 16: 509–523.

    CAS  PubMed  Google Scholar 

  4. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2: 735–747.

    CAS  PubMed  Google Scholar 

  5. Gremion C, Grabscheid B, Wolk B, Moradpour D, Reichen J, Pichler W et al. Cytotoxic T lymphocytes derived from patients with chronic hepatitis C virus infection kill bystander cells via Fas-FasL interaction. J Virol 2004; 78: 2152–2157.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    CAS  PubMed  Google Scholar 

  7. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol 2016; 16: 676–689.

    CAS  PubMed  Google Scholar 

  8. Yang Q, Li G, Zhu Y, Liu L, Chen E, Turnquist H et al. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur J Immunol 2011; 41: 3351–3360.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gajardo T, Morales RA, Campos-Mora M, Campos-Acuna J, Pino-Lagos K. Exogenous interleukin-33 targets myeloid-derived suppressor cells and generates periphery-induced Foxp3(+) regulatory T cells in skin-transplanted mice. Immunology 2015; 146: 81–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Turnquist HR, Zhao Z, Rosborough BR, Liu Q, Castellaneta A, Isse K et al. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 2011; 187: 4598–4610.

    CAS  PubMed  Google Scholar 

  11. Chen CC, Kobayashi T, Iijima K, Hsu FC, Kita H. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. J Allergy Clin Immunol 2017.

  12. Bonilla WV, Frohlich A, Senn K, Kallert S, Fernandez M, Johnson S et al. The alarmin interleukin-33 drives protective antiviral CD8 T cell responses. Science 2012; 335: 984–989.

    CAS  PubMed  Google Scholar 

  13. Liang Y, Jie Z, Hou L, Aguilar-Valenzuela R, Vu D, Soong L et al. IL-33 induces nuocytes and modulates liver injury in viral hepatitis. J Immunol 2013; 190: 5666–5675.

    CAS  PubMed  Google Scholar 

  14. Galani IE, Andreakos E. Neutrophils in viral infections: current concepts and caveats. J Leukoc Biol 2015; 98: 557–564.

    CAS  PubMed  Google Scholar 

  15. Norris BA, Uebelhoer LS, Nakaya HI, Price AA, Grakoui A, Pulendran B. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity 2013; 38: 309–321.

    CAS  PubMed  Google Scholar 

  16. Alvarez-Uria G, Day JN, Nasir AJ, Russell SK, Vilar FJ. Reduction in neutrophil count during hepatitis C treatment: drug toxicity or predictor of good response? Dig Dis Sci 2010; 55: 2058–2062.

    PubMed  Google Scholar 

  17. Silvestre-Roig C, Hidalgo A, Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 2016; 127: 2173–2181.

    CAS  PubMed  Google Scholar 

  18. Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70: 3813–3827.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015; 522: 345–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr., Auxiliadora-Martins M et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 2010; 16: 708–712.

    CAS  PubMed  Google Scholar 

  21. Verri WA Jr., Souto FO, Vieira SM, Almeida SC, Fukada SY, Xu D et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis 2010; 69: 1697–1703.

    CAS  PubMed  Google Scholar 

  22. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116: 5738–5747.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 2012; 122: 327–336.

    CAS  PubMed  Google Scholar 

  24. Lohler J, Gossmann J, Kratzberg T, Lehmann-Grube F. Murine hepatitis caused by lymphocytic choriomeningitis virus. I. The hepatic lesions. Lab Invest 1994; 70: 263–278.

    CAS  PubMed  Google Scholar 

  25. Zinkernagel RM, Haenseler E, Leist T, Cerny A, Hengartner H, Althage A. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay? J Exp Med 1986; 164: 1075–1092.

    CAS  PubMed  Google Scholar 

  26. van de Garde MD, Movita D, van der Heide M, Herschke F, De Jonghe S, Gama L et al. Liver monocytes and kupffer cells remain transcriptionally distinct during chronic viral infection. PLoS One 2016; 11: e0166094.

    PubMed  PubMed Central  Google Scholar 

  27. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 2008; 83: 64–70.

    CAS  PubMed  Google Scholar 

  28. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1981; 1: 431–435.

    CAS  PubMed  Google Scholar 

  29. Jie Z, Liang Y, Hou L, Dong C, Iwakura Y, Soong L et al. Intrahepatic innate lymphoid cells secrete IL-17A and IL-17F that are crucial for T cell priming in viral infection. J Immunol 2014; 192: 3289–3300.

    CAS  PubMed  Google Scholar 

  30. Welsh RM, Seedhom MO. Lymphocytic choriomeningitis virus (LCMV): propagation, quantitation, and storage. Curr Protoc Microbiol 2008; Chapter 15: Unit 15A 11.

    Google Scholar 

  31. Kamp VM, Pillay J, Lammers JW, Pickkers P, Ulfman LH, Koenderman L. Human suppressive neutrophils CD16bright/CD62Ldim exhibit decreased adhesion. J Leukoc Biol 2012; 92: 1011–1020.

    CAS  PubMed  Google Scholar 

  32. Volarevic V, Mitrovic M, Milovanovic M, Zelen I, Nikolic I, Mitrovic S et al. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J Hepatol 2012; 56: 26–33.

    CAS  PubMed  Google Scholar 

  33. Lischke A, Moriggl R, Brandlein S, Berchtold S, Kammer W, Sebald W et al. The interleukin-4 receptor activates STAT5 by a mechanism that relies upon common gamma-chain. J Biol Chem 1998; 273: 31222–31229.

    CAS  PubMed  Google Scholar 

  34. Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 2013; 54: 1–16.

    CAS  PubMed  Google Scholar 

  35. Wei LH, Jacobs AT, Morris SM Jr., Ignarro LJ. IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 2000; 279: C248–C256.

    CAS  PubMed  Google Scholar 

  36. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13: 159–175.

    CAS  PubMed  Google Scholar 

  37. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11: 519–531.

    CAS  PubMed  Google Scholar 

  38. Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol 2015; 36: 547–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossaint J, Zarbock A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J Innate Immun 2013; 5: 348–357.

    CAS  PubMed  Google Scholar 

  40. Li Y, Zhu L, Chu Z, Yang T, Sun HX, Yang F et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol Immunol 2017; 14: 1–13.

    Google Scholar 

  41. Jenne CN, Wong CH, Zemp FJ, McDonald B, Rahman MM, Forsyth PA et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 2013; 13: 169–180.

    CAS  PubMed  Google Scholar 

  42. Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 2010; 202: 1804–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A et al. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity 2016; 44: 1455–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016; 17: 122–131.

    CAS  PubMed  Google Scholar 

  45. Carriere V, Arshad MI, Le Seyec J, Lefevre B, Farooq M, Jan A et al. Endogenous IL-33 deficiency exacerbates liver injury and increases hepatic influx of neutrophils in acute murine viral hepatitis. Mediators Inflamm 2017; 2017: 1359064.

    PubMed  PubMed Central  Google Scholar 

  46. Lan F, Yuan B, Liu T, Luo X, Huang P, Liu Y et al. Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol Immunol 2016; 72: 74–80.

    CAS  PubMed  Google Scholar 

  47. Le HT, Tran VG, Kim W, Kim J, Cho HR, Kwon B. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J Immunol 2012; 189: 287–295.

    CAS  PubMed  Google Scholar 

  48. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016; 167: 829–842 e813.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.

    CAS  PubMed  Google Scholar 

  50. Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM et al. Suppression of T-cell functions by human granulocyte arginase. Blood 2006; 108: 1627–1634.

    CAS  PubMed  Google Scholar 

  51. Nascimento DC, Melo PH, Pineros AR, Ferreira RG, Colon DF, Donate PB et al. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun 2017; 8: 14919.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 2009; 158: 638–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Modolell M, Choi BS, Ryan RO, Hancock M, Titus RG, Abebe T et al. Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis. PLoS Negl Trop Dis 2009; 3: e480.

    PubMed  PubMed Central  Google Scholar 

  54. Kong X, Sun R, Chen Y, Wei H, Tian Z. gammadeltaT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193: 1645–1653.

    CAS  PubMed  Google Scholar 

  55. Croxatto D, Micheletti A, Montaldo E, Orecchia P, Loiacono F, Canegallo F et al. Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol 2016; 9: 1372–1383.

    CAS  PubMed  Google Scholar 

  56. Huber S, Hoffmann R, Muskens F, Voehringer D. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 2012; 116: 3311–3320.

    Google Scholar 

  57. Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2017.

  58. Liang Y, Jie Z, Hou L, Yi P, Wang W, Kwota Z et al. IL-33 promotes innate IFN-gamma production and modulates dendritic cell response in LCMV-induced hepatitis in mice. Eur J Immunol 2015; 45: 3052–3063.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC, Lee J et al. Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 2015; 43: 161–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 2000; 105: 1063–1070.

    CAS  PubMed  Google Scholar 

  61. Xu J, Guardado J, Hoffman R, Xu H, Namas R, Vodovotz Y et al. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translateon study from a human cohort to a mouse trauma model. PLoS Med 2017; 14: e1002365.

    PubMed  PubMed Central  Google Scholar 

  62. Schwartz C, Khan AR, Floudas A, Saunders SP, Hams E, Rodewald HR et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J Exp Med 2017; 214: 2507–2521.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog 2014; 10: e1003993.

    PubMed  PubMed Central  Google Scholar 

  64. Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 2014; 513: 564–568.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Mardelle Susman and Dr Linsey Yeager for assistance with manuscript preparation. We express our gratitude to other members of the UTMB Joint Immunology Working Group (Dr Stephens, Dr Rajsbaum and Dr Hu, as well as their trainees) for many helpful discussions. This work was supported, in part, by grants from the NIH (AI109100 and AI126371 to JS). PY was a visiting scientist partially supported by the Department of Infectious Diseases, Xiangya Hospital, China and the Natural Science Foundation of Hunan Province (no. 14JJ6003). DMKY and ZK were recipients of summer internships from an NIAID T35 training grant (AI078878, PI: LS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuejin Liang or Jiaren Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yi, P., Yuan, D. et al. IL-33 induces immunosuppressive neutrophils via a type 2 innate lymphoid cell/IL-13/STAT6 axis and protects the liver against injury in LCMV infection-induced viral hepatitis. Cell Mol Immunol 16, 126–137 (2019). https://doi.org/10.1038/cmi.2017.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.147

This article is cited by

Search

Quick links