Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Immunological roulette: Luck or something more? Considering the connections between host and environment in TB

Abstract

Accurate prediction of which patient will progress from a sub-clinical Mycobacterium tuberculosis infection to active tuberculosis represents an elusive, yet critical, clinical research objective. From the individual perspective, progression can be considered to be the product of a series of unfortunate events or even a run of bad luck. Here, we identify the subtle physiological relationships that can influence the odds of progression to active TB and how this progression may reflect directed dysbiosis in a number of interrelated systems. Most infected individuals who progress to disease have apparently good immune responses, but these responses are, at times, compromised by either local or systemic environmental factors. Obvious disease promoting processes, such as tissue-damaging granulomata, usually manifest in the lung, but illness is systemic. This apparent dichotomy between local and systemic reflects a clear need to define the factors that promote progression to active disease within the context of the body as a physiological whole. We discuss aspects of the host environment that can impact expression of immunity, including the microbiome, glucocorticoid-mediated regulation, catecholamines and interaction between the gut, liver and lung. We suggest the importance of integrating precision medicine into our analyses of experimental outcomes such that apparently conflicting results are not contentious, but rather reflect the impact of these subtle relationships with our environment and microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017; 5: 291–360.

    Article  Google Scholar 

  2. Bruchfeld J, Correia-Neves M, Källenius G . Tuberculosis and HIV Coinfection. Cold Spring Harbor Perspectives in Medicine 2015; 5: a017871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Du Bruyn E, Wilkinson RJ . The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis. Microbiol Spectr 2016; 4.

  4. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD . Prevalent and incident tuberculosis are independent risk factors for mortality among patients accessing antiretroviral therapy in South Africa. PLoS One 2013; 8: e55824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD . Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. PLoS One 2012; 7: e34156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS et al. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes. Part 1: Epidemiology and clinical management. Chest 2017; 152: 165–173.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ronacher K, van Crevel R, Critchley J, Bremer AA, Schlesinger LS, Kapur A et al. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes. Part 2: Underlying biological mechanisms. Chest 2017; 152: 174–180.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prada-Medina CA, Fukutani KF, Pavan Kumar N, Gil-Santana L, Babu S, Lichtenstein F et al. Systems Immunology of Diabetes-Tuberculosis Comorbidity Reveals Signatures of Disease Complications. Sci Rep 2017; 7: 1999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bruns H, Meinken C, Schauenberg P, Harter G, Kern P, Modlin RL et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 2009; 119: 1167–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacobs RE, Gu P, Chachoua A . Reactivation of pulmonary tuberculosis during cancer treatment. Int J Mycobacteriol 2015; 4: 337–340.

    Article  PubMed  Google Scholar 

  11. Meije Y, Piersimoni C, Torre-Cisneros J, Dilektasli AG, Aguado JM, Hosts ESGoIiC. Mycobacterial infections in solid organ transplant recipients. Clin Microbiol Infect 2014; 20 (Suppl 7): 89–101.

    Article  PubMed  Google Scholar 

  12. Inghammar M, Ekbom A, Engstrom G, Ljungberg B, Romanus V, Lofdahl CG et al. COPD and the risk of tuberculosis—a population-based cohort study. PLoS One 2010; 5: e10138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Orme I, Robinson R, Cooper A . The balance between protective and pathogenic immune responses in the TB infected lung. Nat Immunol 2015; 16: 57–63.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson R, Orme I, Cooper A . The onset of adaptive immunity in the mouse model of tuberculosis and the factors which compromise its expression. Immunol Rev 2015; 264: 46–59.

    Article  CAS  PubMed  Google Scholar 

  15. Santosuosso M, McCormick S, Roediger E, Zhang X, Zganiacz A, Lichty BD et al. Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization. J Immunol 2007; 178: 2387–2395.

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 2016; 7: 13894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis 2016; 16: e47–e63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kiran D, Podell BK, Chambers M, Basaraba RJ . Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 2016; 38: 167–183.

    Article  CAS  PubMed  Google Scholar 

  19. Wallis RS, Hafner R . Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 2015; 15: 255–263.

    Article  CAS  PubMed  Google Scholar 

  20. Tobin DM . Host-Directed Therapies for Tuberculosis. Cold Spring Harb Perspect Med 2015; 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wallis RS, Maeurer M, Mwaba P, Chakaya J, Rustomjee R, Migliori GB et al. Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis 2016; 16: e34–e46.

    Article  CAS  PubMed  Google Scholar 

  22. Sekirov I, Russell SL, Antunes LCM, Finlay BB . Gut Microbiota in Health and Disease. Physiol Rev 2010; 90: 859–904.

    Article  CAS  PubMed  Google Scholar 

  23. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–214.

    Article  CAS  Google Scholar 

  24. Ley RE, Peterson DA, Gordon JI . Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837–848.

    Article  CAS  PubMed  Google Scholar 

  25. O'Hara AM, Shanahan F . The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yurist-Doutsch S, Arrieta MC, Vogt SL, Finlay BB . Gastrointestinal microbiota-mediated control of enteric pathogens. Annu Rev Genet 2014; 48: 361–382.

    Article  CAS  PubMed  Google Scholar 

  27. Cui L, Morris A, Huang L, Beck JM, Twigg HL 3rd, von Mutius E et al. The microbiome and the lung. Annals of the American Thoracic Society 2014; 11 (Suppl 4): S227–S232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E . Dysbiosis and the immune system. Nat Rev Immunol 2017; 17: 219–232.

    Article  CAS  PubMed  Google Scholar 

  29. Messer JS, Liechty ER, Vogel OA, Chang EB . Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol 2017; 10: 567–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schroeder BO, Backhed F . Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22: 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  31. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J . The first thousand days—intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 2014; 25: 428–438.

    Article  PubMed  Google Scholar 

  32. Hong BY, Maulen NP, Adami AJ, Granados H, Balcells ME, Cervantes J . Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clin Microbiol Rev 2016; 29: 915–926.

    Article  PubMed  Google Scholar 

  33. Sanchez B, Gueimonde M, Pena AS, Bernardo D . Intestinal microbiota as modulators of the immune system. J Immunol Res 2015; 2015: 159094.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Winglee K, Eloe-Fadrosh E, Gupta S, Guo H, Fraser C, Bishai W . Aerosol Mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota. PLoS One 2014; 9: e97048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN . Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol 2016; 7: 529.

    PubMed  PubMed Central  Google Scholar 

  36. King IL, Mohrs K, Meli AP, Downey J, Lanthier P, Tzelepis F et al. Intestinal helminth infection impacts the systemic distribution and function of the naive lymphocyte pool. Mucosal Immunol 2017; 10: 1160–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majlessi L, Sayes F, Bureau JF, Pawlik A, Michel V, Jouvion G et al. Colonization with Helicobacter is concomitant with modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis. Mucosal Immunol 2017; 10: 1178–1189.

    Article  CAS  PubMed  Google Scholar 

  38. Joyce SA, Gahan CG . The gut microbiota and the metabolic health of the host. Curr Opin Gastroenterol 2014; 30: 120–127.

    Article  CAS  PubMed  Google Scholar 

  39. Lachmandas E, van den Heuvel CN, Damen MS, Cleophas MC, Netea MG, van Crevel R . Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. J Diabetes Res 2016; 2016: 6014631.

    Article  PubMed  CAS  Google Scholar 

  40. Mason S, van Furth AMT, Solomons R, Wevers RA, van Reenen M, Reinecke CJ . A putative urinary biosignature for diagnosis and follow-up of tuberculous meningitis in children: outcome of a metabolomics study disclosing host-pathogen responses. Metabolomics 2016; 12: 110.

    Article  CAS  Google Scholar 

  41. Armstrong CW, McGregor NR, Lewis DP, Butt HL, Gooley PR . The association of fecal microbiota and fecal, blood serum and urine metabolites in myalgic encephalomyelitis/chronic fatigue syndrome. Metabolomics 2016; 13: 8.

    Article  CAS  Google Scholar 

  42. Das MK, Bishwal SC, Das A, Dabral D, Badireddy VK, Pandit B et al. Deregulated tyrosine-phenylalanine metabolism in pulmonary tuberculosis patients. J Proteome Res 2015; 14: 1947–1956.

    Article  CAS  PubMed  Google Scholar 

  43. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535: 376–381.

    Article  CAS  PubMed  Google Scholar 

  44. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al. Host-gut microbiota metabolic interactions. Science 2012; 336: 1262–1267.

    Article  CAS  PubMed  Google Scholar 

  45. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 185: 1073–1080.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5: e8578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Adami AJ, Cervantes JL . The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2015; 95: 651–658.

    Article  Google Scholar 

  48. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184: 957–963.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Warner BB, Hamvas A . Lungs, microbes and the developing neonate. Neonatology 2015; 107: 337–343.

    Article  PubMed  Google Scholar 

  50. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J . Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43: 81–95.

    Article  CAS  PubMed  Google Scholar 

  51. Rogers GB, Carroll MP, Hoffman LR, Walker AW, Fine DA, Bruce KD . Comparing the microbiota of the cystic fibrosis lung and human gut. Gut Microbes 2010; 1: 85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Man WH, de Steenhuijsen Piters WA, Bogaert D . The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15: 259–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wood MR, Yu EA, Mehta S . The Human Microbiome in the Fight Against Tuberculosis. Am J Trop Med Hyg 2017; 96: 1274–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheung MK, Lam WY, Fung WY, Law PT, Au CH, Nong W et al. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One 2013; 8: e54574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S et al. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol 2012; 12: 276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu J, Liu W, He L, Huang F, Chen J, Cui P et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One 2013; 8: e83445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhao J, Murray S, Lipuma JJ . Modeling the impact of antibiotic exposure on human microbiota. Sci Rep 2014; 4: 4345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ . Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007; 2: 727–738.

    Article  CAS  PubMed  Google Scholar 

  59. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011; 6: 1290–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Becker SA, Palsson BO . Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008; 4: e1000082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jerby L, Shlomi T, Ruppin E . Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010; 6: 401.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Eddy JA, Price ND . Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 2012; 6: 153.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vlassis N, Pacheco MP, Sauter T . Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 2014; 10: e1003424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gomez JA, Hoffner K, Barton PI . DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC bioinformatics 2014; 15: 409.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen J, Gomez JA, Hoffner K, Phalak P, Barton PI, Henson MA . Spatiotemporal modeling of microbial metabolism. BMC Syst Biol 2016; 10: 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hotaling M . A rare romance in medicine:The life and leagcy of Edward Livingstone TrudeauFirst edn.North Country Books: New York. 2016.

    Google Scholar 

  67. Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS et al. Metabolic Phenotypes of Response to Vaccination in Humans. Cell 2017; 169: 862–877 e817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van de Velde LA, Subramanian C, Smith AM, Barron L, Qualls JE, Neale G et al. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. J Biol Chem 2017; 292: 15–30.

    Article  PubMed  CAS  Google Scholar 

  69. Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 2016; 22: 531–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cain DW, Cidlowski JA . Immune regulation by glucocorticoids. Nat Rev Immunol 2017; 17: 233–247.

    Article  CAS  PubMed  Google Scholar 

  71. Dong YH, Chang CH, Wu FL, Shen LJ, Calverley PMA, Lofdahl CG et al. Use of inhaled corticosteroids in patients with COPD and the risk of TB and influenza: A systematic review and meta-analysis of randomized controlled trials. a systematic review and meta-analysis of randomized controlled trials. Chest 2014; 145: 1286–1297.

    Article  CAS  PubMed  Google Scholar 

  72. Winthrop KL, Iseman M . Bedfellows: mycobacteria and rheumatoid arthritis in the era of biologic therapy. Nat Rev Rheumatol 2013; 9: 524–531.

    Article  PubMed  Google Scholar 

  73. Manabe YC, Kesavan AK, Lopez-Molina J, Hatem CL, Brooks M, Fujiwara R et al. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb) 2008; 88: 187–196.

    Article  CAS  Google Scholar 

  74. Baker RW, Walker BR, Shaw RJ, Honour JW, Jessop DS, Lightman SL et al. Increased cortisol: cortisone ratio in acute pulmonary tuberculosis. Am J Respir Crit Care Med 2000; 162: 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  75. Rook G, Baker R, Walker B, Honour J, Jessop D, Hernandez-Pando R et al. Local regulation of glucocorticoid activity in sites of inflammation. Insights from the study of tuberculosis. Ann N Y Acad Sci 2000; 917: 913–922.

    Article  CAS  PubMed  Google Scholar 

  76. Rey AD, Mahuad CV, Bozza VV, Bogue C, Farroni MA, Bay ML et al. Endocrine and cytokine responses in humans with pulmonary tuberculosis. Brain Behav Immun 2007; 21: 171–179.

    Article  PubMed  CAS  Google Scholar 

  77. Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH et al. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 2011; 10: 2238–2247.

    Article  CAS  PubMed  Google Scholar 

  78. Martens GW, Vallerskog T, Kornfeld H, Hypercholesterolemic LDL . receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity. J Leukoc Biol 2012; 91: 849–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deniz O, Gumus S, Yaman H, Ciftci F, Ors F, Cakir E et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem 2007; 40: 162–166.

    Article  CAS  PubMed  Google Scholar 

  80. Sahin F, Yildiz P . Distinctive biochemical changes in pulmonary tuberculosis and pneumonia. Arch Med Sci 2013; 9: 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh V, Goyal RK, Mathur MN . Serum cholesterol in patients with pulmonary tuberculosis. J Indian Med Assoc 1977; 69: 220–222.

    CAS  PubMed  Google Scholar 

  82. Mayer-Barber KD, Sher A . Cytokine and lipid mediator networks in tuberculosis. Immunol Rev 2015; 264: 264–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keicho N, Matsushita I, Tanaka T, Shimbo T, Hang NT, Sakurada S et al. Circulating levels of adiponectin, leptin, fetuin-A and retinol-binding protein in patients with tuberculosis: markers of metabolism and inflammation. PLoS One 2012; 7: e38703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng Y, Ma A, Wang Q, Han X, Cai J, Schouten EG et al. Relation of leptin, ghrelin and inflammatory cytokines with body mass index in pulmonary tuberculosis patients with and without type 2 diabetes mellitus. PLoS One 2013; 8: e80122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perna V, Perez-Perez A, Fernandez-Riejos P, Polo-Padillo J, Batista N, Dominguez-Castellano A et al. Effective treatment of pulmonary tuberculosis restores plasma leptin levels. Eur Cytokine Netw 2013; 24: 157–161.

    PubMed  Google Scholar 

  86. Wieland CW, Florquin S, Chan ED, Leemans JC, Weijer S, Verbon A et al. Pulmonary Mycobacterium tuberculosis infection in leptin-deficient ob/ob mice. Int Immunol 2005; 17: 1399–1408.

    Article  CAS  PubMed  Google Scholar 

  87. Lemos MP, Rhee KY, McKinney JD . Expression of the leptin receptor outside of bone marrow-derived cells regulates tuberculosis control and lung macrophage MHC expression. J Immunol 2011; 187: 3776–3784.

    Article  CAS  PubMed  Google Scholar 

  88. Rajaram MV, Brooks MN, Morris JD, Torrelles JB, Azad AK, Schlesinger LS . Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J Immunol 2010; 185: 929–942.

    Article  CAS  PubMed  Google Scholar 

  89. Mahajan S, Dkhar HK, Chandra V, Dave S, Nanduri R, Janmeja AK et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARgamma and TR4 for survival. J Immunol 2012; 188: 5593–5603.

    Article  CAS  PubMed  Google Scholar 

  90. Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-Periz A et al. Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 2011; 25: 2538–2550.

    Article  CAS  PubMed  Google Scholar 

  91. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19: 557–566.

    Article  CAS  PubMed  Google Scholar 

  92. Opolot JO, Theron AJ, Anderson R, Feldman C . Acute phase proteins and stress hormone responses in patients with newly diagnosed active pulmonary tuberculosis. Lung 2015; 193: 13–18.

    Article  CAS  PubMed  Google Scholar 

  93. Hafeiz AA, Issa HA, el-Kammah B, Abdel-Hafez MA, Abdou MA, Abdel-Khalek M et al. Plasma catecholamines in pulmonary tuberculosis. Kekkaku 1992; 67: 647–652.

    CAS  PubMed  Google Scholar 

  94. Vaccarezza JR, Ruiz DC . The Excretion of a Urinary Metabolite of Epinephrine and Norepinephrine in Tuberculosis. Am Rev Respir Dis 1969; 100: 398–400.

    Article  CAS  PubMed  Google Scholar 

  95. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN et al. Intraalveolar Catecholamines and the Human Lung Microbiome. Am J Respir Crit Care Med 2015; 192: 257–259.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rittirsch D, Flierl MA, Ward PA . Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008; 8: 776–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 2007; 449: 721–725.

    Article  CAS  PubMed  Google Scholar 

  98. Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K et al. Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 2011; 186: 5975–5982.

    Article  CAS  PubMed  Google Scholar 

  99. Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S . Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 2009; 21: 645–654.

    Article  CAS  PubMed  Google Scholar 

  100. Grailer JJ, Haggadone MD, Sarma JV, Zetoune FS, Ward PA . Induction of M2 regulatory macrophages through the beta2-adrenergic receptor with protection during endotoxemia and acute lung injury. J Innate Immun 2014; 6: 607–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim MH, Gorouhi F, Ramirez S, Granick JL, Byrne BA, Soulika AM et al. Catecholamine stress alters neutrophil trafficking and impairs wound healing by beta2-adrenergic receptor-mediated upregulation of IL-6. J Invest Dermatol 2014; 134: 809–817.

    Article  CAS  PubMed  Google Scholar 

  102. Dorhoi A, Iannaccone M, Maertzdorf J, Nouailles G, Weiner J 3rd, Kaufmann SH . Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease. Front Immunol 2014; 5: 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. National Academy of Sciences.: Washington DC, USA. 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M Cooper.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearl, J., Das, M. & Cooper, A. Immunological roulette: Luck or something more? Considering the connections between host and environment in TB. Cell Mol Immunol 15, 226–232 (2018). https://doi.org/10.1038/cmi.2017.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.145

Keywords

This article is cited by

Search

Quick links