Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection

Abstract

Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Scott L, da Silva P, Boehme CC, Stevens W, Gilpin CM . Diagnosis of opportunistic infections: HIV co-infections—tuberculosis. Curr Opin HIV AIDS 2017; 12: 129–138.

    PubMed  PubMed Central  Google Scholar 

  2. Awuh JA, Flo TH . Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74: 1625–1648.

    CAS  PubMed  Google Scholar 

  3. Jasmer RM, Nahid P, Hopewell PC . Latent tuberculosis infection. N Engl J Med 2002; 347: 1860–1866.

    PubMed  Google Scholar 

  4. Fan L, Shen H, Huang H, Yang R, Yao L . Impairment of Wnt/β-catenin signaling in blood cells of patients with severe cavitary pulmonary tuberculosis. PLoS One 2017; 12: e0172549.

    PubMed  PubMed Central  Google Scholar 

  5. Garib FY, Rizopulu AP . T regulatory cells as part of strategy of immune evasion by pathogens. Biochemistry (Moscow) 2015; 80: 957–971.

    CAS  Google Scholar 

  6. Stenger SNK, Modlin RL . Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 1998; 161: 3582–3588.

    CAS  PubMed  Google Scholar 

  7. Sutton CE, Lalor SJ, Brereton CF, Sweeney CM, Lavelle EC, Mills KHG . Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31: 331–341.

    CAS  PubMed  Google Scholar 

  8. Song X, He X, Li X, Qian Y . The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13: 418–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Papotto PH, Ribot JC, Silva-Santos B . IL-17+ γδ T cells as kick-starters of inflammation. Nat Immunol 2017; 18: 604–611.

    CAS  PubMed  Google Scholar 

  10. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 2007; 178: 3786–3796.

    CAS  PubMed  Google Scholar 

  11. Tateosian NL, Pellegrini JM, Amiano NO, Rolandelli A, Casco N, Palmero DJ et al. IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease. Autophagy 2017; 13: 1191–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN . T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol 2017; 43: 133–141.

    CAS  PubMed  Google Scholar 

  13. Rai PK, Chodisetti SB, Nadeem S, Maurya SK, Gowthaman U, Zeng W et al. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host. Sci Rep 2016; 6: 23917.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Periasamy S, Dhiman R, Barnes PF, Paidipally P, Tvinnereim A, Bandaru A, VL et al. Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation with Mycobacterium tuberculosis. J Infect Dis 2011; 203: 1256–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen L, Shi H, Gao Y, Liu Q, Liu Y, Wu J et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis. Tuberculosis (Edinb) 2016; 101: 146–150.

    CAS  Google Scholar 

  16. Bandaru A, Devalraju KP, Paidipally P, Dhiman R, Venkatasubramanian S, Barnes PF et al. Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection. Eur J Immunol 2014; 44: 2013–2024.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Segueni N, Tritto E, Bourigault M-L, Rose S, Erard F, Bert ML et al. Controlled Mycobacterium tuberculosis infection in mice under treatment with anti-IL-17A or IL-17F antibodies, in contrast to TNFα neutralization. Sci Rep 2016; 6: 36923.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Milano M, Moraes MO, Rodenbusch R, Carvalho CX, Delcroix M, Mousquer G et al. Single nucleotide polymorphisms in IL17A and IL6 are associated with decreased risk for pulmonary tuberculosis in Southern Brazilian Population. PLoS One 2016; 11: e0147814.

    PubMed  PubMed Central  Google Scholar 

  19. Yoshida YO, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 2010; 184: 4414–4422.

    Google Scholar 

  20. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007; 8: 369–377.

    CAS  PubMed  Google Scholar 

  21. Lombard R, Doz E, Carreras F, Epardaud M, Vern YL, Buzoni-Gatel D et al. IL-17RA in non-hematopoietic cells controls CXCL-1 and 5 critical to recruit neutrophils to the lung of mycobacteria-infected mice during the adaptive immune response. PLoS One 2016; 11: e0149455.

    PubMed  PubMed Central  Google Scholar 

  22. Danda D, Goel R, Danda S, Mohan H, Joseph G, Kabeerdoss J et al. Interleukin-17F and interleukin-6 gene polymorphisms in Asian Indian patients with Takayasu arteritis. Hum Immunol 2017; S0198-8859: 30070–30078.

    Google Scholar 

  23. Hongbo Shen YW, Chen CY, Frencher J, Huang D, Yang E, Ryan-Payseur B et al. Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vγ2Vδ2 T cells after M. tuberculosis infection or vaccination. Eur J Immunol 2015; 45: 442–451.

    PubMed  PubMed Central  Google Scholar 

  24. Venkatasubramanian S, Cheekatla S, Paidipally P, Tripathi D, Welch E, Tvinnereim AR et al. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol 2016; 10: 1031–1042.

    PubMed  PubMed Central  Google Scholar 

  25. Wu C, Li Z, Fu X, Yu S, Lao S, Yang B . Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins. Oncotarget 2015; 6: 28633–28645.

    PubMed  PubMed Central  Google Scholar 

  26. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y et al. Mycobacterium tuberculosis-specific IL-21+IFN-γ+CD4+ T cells are regulated by IL-12. PLoS One 2016; 11: e0147356.

    PubMed  PubMed Central  Google Scholar 

  27. Booty MG, Barreira-Silva P, Carpenter SM, Nunes-Alves C, Jacques MK, Stowell BL et al. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection. Sci Rep 2016; 6: 36720.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Plessis WJD, Kleynhans L, Plessis ND, Stanley K, Malherbe ST, Maasdorp E et al. The Functional response of B cells to antigenic stimulation: a preliminary report of latent tuberculosis. PLoS One 2016; 11: e0152710.

    PubMed  PubMed Central  Google Scholar 

  29. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol 2007; 179: 8180–8190.

    CAS  PubMed  Google Scholar 

  30. Kumar NP, Sridhar R, Hanna LE, Banurekha VV, Nutman TB, Babu S . Decreased frequencies of circulating CD4+ T follicular helper cells associated with diminished plasma IL-21 in active pulmonary tuberculosis. PLoS One 2014; 9: e111098.

    PubMed  PubMed Central  Google Scholar 

  31. Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC et al. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 2010; 6: e1000789.

    PubMed  PubMed Central  Google Scholar 

  32. Zhang M, Zeng G, Yang Q, Zhang J, Zhu X, Chen Q et al. Anti-tuberculosis treatment enhances the production of IL-22 through reducing the frequencies of regulatory B cell. Tuberculosis (Edinb) 2014; 94: 238–244.

    CAS  Google Scholar 

  33. Lee M-R, Tsai C-J, Wang W-J, Chuang T-Y, Yang C-M, Chang L-Y et al. Plasma biomarkers can predict treatment response in tuberculosis patients, a prospective observational study. Medicine (Baltimore) 2015; 94: e1628.

    CAS  Google Scholar 

  34. Cowan J, Pandey S, Filion LG, Angel JB, Kumar A, Cameron DW . Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clin Exp Immunol 2012; 167: 317–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G et al. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 2008; 180: 1962–1970.

    CAS  PubMed  Google Scholar 

  36. Guillon A, Jouan Y, Brea D, Gueugnon F, Dalloneau E, Baranek T et al. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence. Eur Respir J 2015; 46: 771–782.

    CAS  PubMed  Google Scholar 

  37. Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW . CD4+ T cells are required to contain early extrathoracic TB dissemination and sustain multi-effector functions of CD8+ T and CD3− lymphocytes. J Immunol 2014; 192: 2120–2132.

    CAS  PubMed  Google Scholar 

  38. Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LVM et al. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol 2009; 183: 6639–6645.

    CAS  PubMed  Google Scholar 

  39. Søndergaard JN, Laursen JM, Rosholm LB, Brix S . Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-γ. Int Immunol 2014; 26: 705–716.

    PubMed  Google Scholar 

  40. Zeng G, Chen CY, Huang D, Yao S, Wang RC, Chen ZW . Membrane-bound IL-22 after de novo production in tuberculosis and anti-Mycobacterium tuberculosis effector function of IL-22+ CD4+ T cells. J Immunol 2011; 187: 190–199.

    CAS  PubMed  Google Scholar 

  41. Qiu Y, Huang Y, Qiao D, Zeng G, Cai J . Depletion of IL-22 during culture enhanced antigen-driven IFN-γ production by CD4+T cells from patients with active TB. Immunol Lett 2013; 150: 48–53.

    CAS  PubMed  Google Scholar 

  42. Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol 2010; 184: 4378–4390.

    CAS  PubMed  Google Scholar 

  43. Liyou Qiu DH, Chen CY, Wang R, Shen L, Shen Y, Hunt R et al. Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-1α, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-β, TIM1, and TLR2 but low antigen-specific cellular responses. J Infect Dis 2008; 198: 1514–1519.

    PubMed  Google Scholar 

  44. Treerat P, Prince O, Cruz-Lagunas A, Muñoz-Torrico M, Salazar-Lezama MA, Selman M et al. Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol 2017; 10: 1069–1081.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang G, Chen X, Chan L, Zhang M, Zhu B, Wang L et al. An SNP selection strategy identified IL-22 associating with susceptibility to tuberculosis in Chinese. Sci Rep 2011; 1: 20.

    PubMed  PubMed Central  Google Scholar 

  46. Lutay N, HÃ¥kansson G, Alaridah N, Hallgren O, Westergren-Thorsson G, Godaly G . Mycobacteria bypass mucosal NF-kB signalling to induce an epithelial anti-inflammatory IL-22 and IL-10 response. PLoS One 2014; 9: e86466.

    PubMed  PubMed Central  Google Scholar 

  47. Yang C-S, Song C-H, Lee J-S, Jung S-B, Oh J-H, Park J et al. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. Cell Microbiol 2006; 8: 1158–1171.

    CAS  PubMed  Google Scholar 

  48. Fazila N, Mat C, Zhang X, Guzzo C, Gee K . Interleukin-23-induced interleukin-23 receptor subunit expression is mediated by the Janus kinase/signal transducer and activation of transcription pathway in human CD4 T cells. J Interferon Cytokine Res 2011; 31: 363–371.

    Google Scholar 

  49. Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med 2008; 205: 1447–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leepiyasakulchai C, Taher C, Chuquimia OD, Mazurek J, Söderberg-Naucler C, Fernández C et al. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis. PLoS One 2013; 8: e69287.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M et al. Interleukin-23 dependent IL-17 drives Th1 responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 2012; 42: 364–373.

    CAS  PubMed  Google Scholar 

  52. Huang Y, Matsumura Y, Hatano S, Noguchi N, Murakami T, Iwakura Y et al. IL-21 inhibits IL-17A-producing cd T-cell response after infection with Bacillus Calmette-Gue'rin via induction of apoptosis. Innate Immunity 2016; 22: 588–597.

    CAS  PubMed  Google Scholar 

  53. Shen H, Gu J, Xiao H, Liang S, Yang E, Yang R et al. Selective destruction of interleukin 23-induced expansion of a major antigen-specific γδ T-cell subset in patients with tuberculosis. J Infect Dis 2017; 215: 420–430.

    CAS  PubMed  Google Scholar 

  54. Cao Q, Li YY, He W-F, Zhang Z-Z, Zhou Q, Liu X et al. Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol Genomics 2013; 45: 1206–1214.

    CAS  PubMed  Google Scholar 

  55. Ambros V . microRNAs: tiny regulators with great potential. Cell 2001; 107: 823–826.

    CAS  PubMed  Google Scholar 

  56. Brent S, McKenzie RAKADJC . Understanding the IL-23-IL-17 immune pathway. Trends Immunol 2006; 27: 17–23.

    Google Scholar 

  57. Shen L, Shen Y, Huang D, Qiu L, Sehgal P, Du GZ et al. Development of Vgamma2Vdelta2+ T cell responses during active mycobacterial coinfection of simian immunodeficiency virus-infected macaques requires control of viral infection and immune competence of CD4+ T cells. J Infect Dis 2004; 190: 1438–1447.

    CAS  PubMed  Google Scholar 

  58. Zhong ZWZ, Darnell JE Jr . Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science (New York, NY) 1994; 264: 95–98.

    CAS  Google Scholar 

  59. Huang G, Yan H, Ye S, Tong C, Ying Q-L . STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014; 32: 1149–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Elliott J, Suessmuth Y, Scott LM, Nahlik K, McMullin MF, Constantinescu SN et al. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases. Haematologica 2009; 94: 576–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Z, Gan L, Zhou Z, Jin W, Sun C . SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte. Immunobiology 2015; S0171-2985 00025-X.

  62. Jung BG, Wang X, Yi N, Ma J, Turner J, Samten B . Early secreted antigenic target of 6-kDa of Mycobacterium tuberculosis stimulates IL-6 production by macrophages through activation of STAT3. Sci Rep 2017; 7: 40984.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagabhushanam V, Solache A, Ting L-M, Escaron CJ, Zhang JY, Ernst JD . Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J Immunol 2003; 171: 4750–4757.

    CAS  PubMed  Google Scholar 

  64. Lienard J, Movert E, Valfridsson C, Sturegård E, Carlsson F . ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol 2016; 18: 1471–1485.

    CAS  PubMed  Google Scholar 

  65. Siddiqui KF, Amir M, Gurram RK, Khan N, Arora A, Rajagopal K, Agrewala JN et al. Latency-associated protein Acr1 impairs dendritic cell maturation and functionality: a possible mechanism of immune evasion by Mycobacterium tuberculosis. J Infect Dis 2014; 209: 1436–1445.

    CAS  PubMed  Google Scholar 

  66. Arcos J, Sasindran SJ, Moliva JI, Scordo JM, Sidiki S, Guo H et al. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. Mucosal Immunol 2016; 10: 1248–1258.

    PubMed  PubMed Central  Google Scholar 

  67. Lastrucci C, Bénard A, Balboa L, Pingris K, Souriant S, Poincloux R et al. Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis. Cell Res 2015; 25: 1333–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Martínez-Neri PA, López-Rincón G, Mancilla-Jiménez R, Toro-Arreola SD, Muñoz-Valle JF, Fafutis-Morris M et al. Prolactin modulates cytokine production induced by culture filtrate proteins of M. bovis through different signaling mechanisms in THP1 cells. Cytokine 2015; 71: 1.

    Google Scholar 

  69. Labzin LI, Lauterbach MAR, Latz E . Interferons and inflammasomes: cooperation and counterregulation in disease. J Allergy Clin Immunol 2016; 38: 37–46.

    Google Scholar 

  70. Polgar NCV, Szabo M, Zambo V, Melegh BI, Sumegi K, Nagy G, Tulassay Z, Melegh B . Investigation of JAK2, STAT3 and CCR6 polymorphisms and their gene-gene interactions in inflammatory bowel disease. Int J Immunogenet 2012; 39: 247–252.

    CAS  PubMed  Google Scholar 

  71. Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol 2017; 2: 17072.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ye Z-J, Xu L-L, Zhou Q, Cui A, Wang X-J, Zhai K et al. Recruitment of IL-27-producing CD4(+) T cells and effect of IL-27 on pleural mesothelial cells in tuberculous pleurisy. Lung 2015; 193: 539–548.

    CAS  PubMed  Google Scholar 

  73. Hölscher C, Hölscher A, Rückerl D, Yoshimoto T, Yoshida H, Mak T et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 2005; 174: 3534–3544.

    PubMed  Google Scholar 

  74. Kumar R, Sahu SK, Kumar M, Jana K, Gupta P, Gupta UD et al. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol 2016; 18: 679–691.

    CAS  PubMed  Google Scholar 

  75. Yokoyama T, Kondo Y, Kondo S . Roles of mTOR and STAT3 in autophagy induced by telomere 3' overhang-specific DNA oligonucleotides. Autophagy 2007; 3: 496–498.

    CAS  PubMed  Google Scholar 

  76. Deretic V, Delgado M, Vergne I, Master S, Haro SD, Ponpuak M et al. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 2009; 335: 169–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahme R et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 2013; 110: E2480–E2489.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L et al. Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science (New York, NY) 2002; 295: 2255–2258.

    CAS  Google Scholar 

  79. Bonnevillea M, Chen ZW, Déchanet-Mervillec J, Eberld M, Fourniée JJ, Jamesonf JM et al. Chicago 2014—30years of γδ T cells. Cell Immunol 2015; 296: 3–9.

    Google Scholar 

  80. de Jong R, Janson AA, Faber WR, Naafs B, Ottenhoff TH . IL-2 and IL-12 act in synergy to overcome antigen-specific T cell unresponsiveness in mycobacterial disease. J Immunol 1997; 159: 786–793.

    CAS  PubMed  Google Scholar 

  81. Valle-Mendiola A, Weiss-Steider B, Rocha-Zavaleta L, Soto-Cruz I . IL-2 enhances cervical cancer cells proliferation and JAK3/STAT5 phosphorylation at low doses, while at high doses IL-2 has opposite effects. Cancer Invest 2014; 32: 115–125.

    CAS  PubMed  Google Scholar 

  82. Chen CY, Huang D, Yao S, Halliday L, Zeng G, Wang RC et al. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol 2012; 199: 4278–4288.

    Google Scholar 

  83. Quan L, Chen X, Liu A, Zhang Y, Guo X, Yan S et al. PD-1 blockade can restore functions of T-Cells in Epstein–Barr virus-positive diffuse large B-cell lymphoma in vitro. PLoS One 2015; 10: e0136476.

    PubMed  PubMed Central  Google Scholar 

  84. Basile JI, Iatcovsky DK, Romero MM, Balboa L, Monteserin J, Ritacco V et al. Mycobacterium tuberculosis multi-drug-resistant strain M induces IL-17+ IFNγ− CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clin Exp Immunol 2017; 187: 160–173.

    CAS  PubMed  Google Scholar 

  85. Radzikowska E, Roży A, Jaguś P, Wiatr E, Gawryluk D, Chorostowska-Wynimko J et al. Cryptogenic organizing pneumonia: IL-1β, IL-6, IL-8, and TGF- β1 serum concentrations and response to clarithromycin treatment. Adv Exp Med Biol 2016; 911: 77–85.

    CAS  PubMed  Google Scholar 

  86. Chowdhury IH, Ahmed AM, Choudhuri S, Sen A, Hazra A, Pal NK et al. Alteration of serum inflammatory cytokines in active pulmonary tuberculosis following anti-tuberculosis drug therapy. Mol Immunol 2014; 62: 159–168.

    CAS  PubMed  Google Scholar 

  87. Clifford V, Zufferey C, Street A, Denholm J, Tebruegge M, Curtis N . Cytokines for monitoring anti-tuberculous therapy: a systematic review. Tuberculosis 2015; 95: 217–218.

    CAS  PubMed  Google Scholar 

  88. Stephen-Victor E, Sharma VK, Das M, Karnam A, Saha C, Lecerf M et al. IL-1β, but not programed death-1 and programed death ligand pathway, is critical for the human Th17 response to Mycobacterium tuberculosis. Front Immunol 2016; 7: 465.

    PubMed  PubMed Central  Google Scholar 

  89. Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F . Regulation of interleukin-12/interleukin-23 production and the Thelper 17 response in humans. Immunol Rev 2008; 226: 112.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kathamuthu GR, Moideen K, Baskaran D, Banurekha VV, Nair D, Sekar G et al. Tuberculous lymphadenitis is associated with enhanced baseline and antigen-specific induction of type 1 and type 17 cytokines and reduced interleukin-1β (IL-1β) and IL-18 at the site of infection. Clin Vaccine Immunol 2017; 24: e00045–00017.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 2007; 179: 1178–1189.

    CAS  PubMed  Google Scholar 

  92. Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N et al. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 2013; 8: e53531.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lyadova IV, Panteleev AV . Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediat Inflamm 2015; 2015: 854507.

    CAS  Google Scholar 

  94. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 2007; 179: 7791–7799.

    CAS  PubMed  Google Scholar 

  95. Lin PL, Maiello P, Gideon HP, Coleman MT, Cadena AM, Rodgers MA et al. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog 2016; 12: e1005739.

    PubMed  PubMed Central  Google Scholar 

  96. Matthews K, Wilkinson KA, Kalsdorf B, Roberts T, Diacon A, Walzl G et al. Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis (Edinb) 2011; 91: 587–593.

    CAS  Google Scholar 

  97. Qiu L, Huang D, Chen CY, Wang R, Shen L, Shen Y et al. Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-1alpha, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. J Infect Dis 2008; 198: 1514–1519.

    PubMed  Google Scholar 

  98. Chen CY, Huang D, Yao S, Halliday L, Zeng G, Wang RC et al. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol 2012; 188: 4278–4288.

    CAS  PubMed  Google Scholar 

  99. Bystrom J, Taher TE, Muhyaddin MS, Clanchy FI, Mangat P, Jawad AS et al. Harnessing the therapeutic potential of Th17 cells. Mediators Inflamm 2015; 2015: 205156.

    PubMed  PubMed Central  Google Scholar 

  100. Chen CY, Yao S, Huang D, Wei H, Sicard H, Zeng G et al. Phosphoantigen/IL2 expansion and differentiation of Vgamma2Vdelta2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog 2013; 9: e1003501.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bermudez LE, Stevens P, Kolonoski P, Wu M, Young LS . Treatment of experimental disseminated Mycobacterium avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol 1989; 143: 2996–3000.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following research grants: The National Key Research and Development Program of China (2016YFA0502204); the National Institutes of Health R01 grants (NIH R01 HL64560/OD015092/HL129887 to ZWC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Chen, Z. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 15, 216–225 (2018). https://doi.org/10.1038/cmi.2017.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.128

Keywords

This article is cited by

Search

Quick links