Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

IL-17-triggered downregulation of miR-497 results in high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice

Abstract

Interleukin 17 (IL-17) is increasingly recognized as a key factor that contributes to the pathogenesis of multiple sclerosis (MS) and its experimental mouse autoimmune encephalomyelitis (EAE) model. However, the roles and regulatory mechanisms of IL-17-induced pro-inflammatory cytokine production in EAE mice remain largely unclear. In this study, the expression of IL-17, hypoxia inducible factor-1α (HIF-1α), IL-1β, IL-6 and microRNA-497 (miR-497), as well as their intrinsic associations, was investigated using EAE model mice and cultured astrocytes exposed to IL-17 in vitro. We observed markedly increased production of IL-17, HIF-1α, IL-1β and IL-6 in the brain tissues of EAE mice, while the expression and secretion of HIF-1α, IL-1β and IL-6 were also significantly increased when cultured primary astrocytes from mice were stimulated with IL-17. Meanwhile, the expression of miR-497 was downregulated both in vivo and in vitro. Subsequent in vitro experiments revealed that IL-17 induced the production of IL-1β and IL-6 in astrocytes through the upregulation of HIF-1α as a transcriptional factor, indicating that IL-17-mediated downregulation of miR-497 enhanced HIF-1α expression. Furthermore, astrocyte-specific knockdown of IL-17RA and HIF-1α or astrocyte-specific overexpression of miR-497 by infection with different lentiviral vectors containing an astrocyte-specific promotor markedly decreased IL-1β and IL-6 production in brain tissues and alleviated the pathological changes and score of EAE mice. Collectively, these findings indicate that decreased miR-497 expression is responsible for IL-17-triggered high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ledford H . Drug that boosts nerve signals offers hope for multiple sclerosis. Nature 2015; 520: 417.

    Article  Google Scholar 

  2. Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015; 85: 18–28.

    Article  CAS  Google Scholar 

  3. Clemente D, Ortega MC, Arenzana FJ, de Castro F . FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J Neurosci 2011; 31: 14899–14909.

    Article  CAS  Google Scholar 

  4. Vergara D, D'Alessandro M, Rizzello A, De Riccardis L, Lunetti P, Del Boccio P et al. A lipidomic approach to the study of human CD4(+) T lymphocytes in multiple sclerosis. BMC Neurosci 2015; 16: 46.

    Article  Google Scholar 

  5. Li Y, Wang H, Long Y, Lu Z, Hu X . Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol 2011; 234: 155–160.

    Article  CAS  Google Scholar 

  6. Zhang X, Tao Y, Chopra M, Dujmovic-Basuroski I, Jin J, Tang Y et al. IL-11 induces Th17 cell responses in patients with early relapsing-remitting multiple sclerosis. J Immunol 2015; 194: 5139–5149.

    Article  CAS  Google Scholar 

  7. Babaloo Z, Aliparasti MR, Babaiea F, Almasi S, Baradaran B, Farhoudi M . The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol Lett 2015; 164: 76–80.

    Article  CAS  Google Scholar 

  8. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172: 146–155.

    Article  CAS  Google Scholar 

  9. Park BV, Pan F . The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol 2015; 12: 533–542.

    Article  CAS  Google Scholar 

  10. Rossi S, Studer V, Motta C, Germani G, Macchiarulo G, Buttari F et al. Cerebrospinal fluid detection of interleukin-1beta in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation 2014; 11: 32.

    Article  Google Scholar 

  11. Schneider A, Long SA, Cerosaletti K, Ni CT, Samuels P, Kita M et al. In active relapsing-remitting multiple sclerosis, effector T cell resistance to adaptive T(regs) involves IL-6-mediated signaling. Sci Transl Med 2013; 5: 170ra115.

    Article  Google Scholar 

  12. Elain G, Jeanneau K, Rutkowska A, Mir AK, Dev KK . The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia 2014; 62: 725–735.

    Article  Google Scholar 

  13. Chen J, Liao MY, Gao XL, Zhong Q, Tang TT, Yu X et al. IL-17A induces pro-inflammatory cytokines production in macrophages via MAPKinases, NF-kappaB and AP-1. Cell Physiol Biochem 2013; 32: 1265–1274.

    Article  CAS  Google Scholar 

  14. Havrdova E, Belova A, Goloborodko A, Tisserant A, Wright A, Wallstroem E et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J Neurol 2016; 263: 1287–1295.

    Article  CAS  Google Scholar 

  15. Burger D, Molnarfi N, Weber MS, Brandt KJ, Benkhoucha M, Gruaz L et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. Proc Natl Acad Sci USA 2009; 106: 4355–4359.

    Article  CAS  Google Scholar 

  16. Sheridan GK, Dev KK . Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. Sci Rep 2014; 4: 5051.

    Article  CAS  Google Scholar 

  17. Gobel K, Schuhmann MK, Pankratz S, Stegner D, Herrmann AM, Braun A et al. Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis. Eur J Immunol 2014; 44: 2295–2305.

    Article  Google Scholar 

  18. Lanz TV, Becker S, Osswald M, Bittner S, Schuhmann MK, Opitz CA et al. Protein kinase Cbeta as a therapeutic target stabilizing blood-brain barrier disruption in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2013; 110: 14735–14740.

    Article  CAS  Google Scholar 

  19. Lu Y, Chen B, Song JH, Zhen T, Wang BY, Li X et al. Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc Natl Acad Sci USA 2013; 110: 2258–2263.

    Article  CAS  Google Scholar 

  20. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 2015; 125: 1069–1080.

    Article  Google Scholar 

  21. Xiao Y, Jin J, Chang M, Nakaya M, Hu H, Zou Q et al. TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling. J Exp Med 2014; 211: 1689–1702.

    Article  CAS  Google Scholar 

  22. Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H et al. Interleukin-1beta alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33: 12105–12121.

    Article  CAS  Google Scholar 

  23. Gentile A, Fresegna D, Federici M, Musella A, Rizzo FR, Sepman H et al. Dopaminergic dysfunction is associated with IL-1beta-dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiol Dis 2015; 74: 347–358.

    Article  CAS  Google Scholar 

  24. Savarin C, Hinton DR, Valentin-Torres A, Chen Z, Trapp BD, Bergmann CC et al. Astrocyte response to IFN-gamma limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. J Neuroinflammation 2015; 12: 79.

    Article  Google Scholar 

  25. Erta M, Giralt M, Jimenez S, Molinero A, Comes G, Hidalgo J . Astrocytic IL-6 influences the clinical symptoms of EAE in mice. Brain Sci 2016; 6: E15.

    Article  Google Scholar 

  26. Trajkovic V, Stosic-Grujicic S, Samardzic T, Markovic M, Miljkovic D, Ramic Z et al. Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. J Neuroimmunol 2001; 119: 183–191.

    Article  CAS  Google Scholar 

  27. Ma X, Reynolds SL, Baker BJ, Li X, Benveniste EN, Qin H . IL-17 enhancement of the IL-6 signaling cascade in astrocytes. J Immunol 2010; 184: 4898–4906.

    Article  CAS  Google Scholar 

  28. Zong S, Li K, Zeng G, Fang Y, Zhao J . The effects of interleukin-17 (IL-17)-related inflammatory cytokines and A20 regulatory proteins on astrocytes in spinal cord cultured in vitro. Cell Physiol Biochem 2016; 38: 1100–1110.

    Article  CAS  Google Scholar 

  29. Ahmed M, Gaffen SL . IL-17 inhibits adipogenesis in part via C/EBPalpha, PPARgamma and Kruppel-like factors. Cytokine 2013; 61: 898–905.

    Article  CAS  Google Scholar 

  30. Jeong SH, Kim HJ, Jang Y, Ryu WI, Lee H, Kim JH et al. Egr-1 is a key regulator of IL-17A-induced psoriasin upregulation in psoriasis. Exp Dermatol 2014; 23: 890–895.

    Article  CAS  Google Scholar 

  31. Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Mol Immunol 2013; 53: 227–236.

    Article  CAS  Google Scholar 

  32. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Scholz CC et al. REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep 2015; 5: 17851.

    Article  CAS  Google Scholar 

  33. Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K . Hypoxia enhances proliferation of human adipose-derived stem cells via HIF-1a activation. PLoS One 2015; 10: e0139890.

    Article  Google Scholar 

  34. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013; 496: 238–242.

    Article  CAS  Google Scholar 

  35. Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM, Bachman MA . Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1alpha and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect Immun 2014; 82: 3826–3836.

    Article  Google Scholar 

  36. Suresh MV, Ramakrishnan SK, Thomas B, Machado-Aranda D, Bi Y, Talarico N et al. Activation of hypoxia-inducible factor-1alpha in type 2 alveolar epithelial cell is a major driver of acute inflammation following lung contusion. Crit Care Med 2014; 42: e642–e653.

    Article  CAS  Google Scholar 

  37. Li R, Uttarwar L, Gao B, Charbonneau M, Shi Y, Chan JS et al. High glucose up-regulates ADAM17 through HIF-1alpha in mesangial cells. J Biol Chem 2015; 290: 21603–21614.

    Article  CAS  Google Scholar 

  38. Jung YJ, Choi H, Kim H, Lee SK . MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol 2014; 88: 9027–9037.

    Article  Google Scholar 

  39. Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X et al. Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 2014; 5: 149.

    Article  Google Scholar 

  40. Jin M, Zhang T, Liu C, Badeaux MA, Liu B, Liu R et al. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res 2014; 74: 4183–4195.

    Article  CAS  Google Scholar 

  41. Xin Q, Li J, Dang J, Bian X, Shan S, Yuan J et al. miR-155 deficiency ameliorates autoimmune inflammation of systemic lupus erythematosus by targeting S1pr1 in Faslpr/lpr mice. J Immunol 2015; 194: 5437–5445.

    Article  CAS  Google Scholar 

  42. Ichii O, Otsuka-Kanazawa S, Horino T, Kimura J, Nakamura T, Matsumoto M et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014; 9: e110383.

    Article  Google Scholar 

  43. Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H et al. miR-141 regulates colonic leukocytic trafficking by targeting CXCL12beta during murine colitis and human Crohn's disease. Gut 2014; 63: 1247–1257.

    Article  CAS  Google Scholar 

  44. Liu X, He F, Pang R, Zhao D, Qiu W, Shan K et al. Interleukin-17 (IL-17)-induced microRNA 873 (miR-873) contributes to the pathogenesis of experimental autoimmune encephalomyelitis by targeting A20 ubiquitin-editing enzyme. J Biol Chem 2014; 289: 28971–28986.

    Article  CAS  Google Scholar 

  45. Yunus MA, Chung LM, Chaudhry Y, Bailey D, Goodfellow I . Development of an optimized RNA-based murine norovirus reverse genetics system. J Virol Methods 2010; 169: 112–118.

    Article  CAS  Google Scholar 

  46. Moore JC, Atze K, Yeung PL, Toro-Ramos AJ, Camarillo C, Thompson K et al. Efficient, high-throughput transfection of human embryonic stem cells. Stem Cell Res Ther 2010; 1: 23.

    Article  Google Scholar 

  47. Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A . GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 1994; 14: 1030–1037.

    Article  CAS  Google Scholar 

  48. Moore SM, Khalaj AJ, Kumar S, Winchester Z, Yoon J, Yoo T et al. Multiple functional therapeutic effects of the estrogen receptor beta agonist indazole-Cl in a mouse model of multiple sclerosis. Proc Natl Acad Sci USA 2014; 111: 18061–18066.

    Article  CAS  Google Scholar 

  49. Cui M, Kanemoto S, Cui X, Kaneko M, Asada R, Matsuhisa K et al. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis. Sci Rep 2015; 5: 16455.

    Article  CAS  Google Scholar 

  50. Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L . Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 2010; 40: 888–898.

    Article  CAS  Google Scholar 

  51. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF . Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther 2013; 15: R97.

    Article  Google Scholar 

  52. Kellner H . Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis 2013; 5: 141–152.

    Article  CAS  Google Scholar 

  53. Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J et al. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 2009; 6: 14.

    Article  Google Scholar 

  54. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566–573.

    Article  CAS  Google Scholar 

  55. Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL . Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol 2000; 164: 4481–4492.

    Article  CAS  Google Scholar 

  56. Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 2010; 32: 414–425.

    Article  CAS  Google Scholar 

  57. Huang W, Chen Z, Zhang L, Tian D, Wang D, Fan D et al. Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice. Gastroenterology 2015; 149: 1053–1067.

    Article  CAS  Google Scholar 

  58. Remels AH, Gosker HR, Verhees KJ, Langen RC, Schols AM . TNF-alpha-induced NF-kappaB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1alpha. Endocrinology 2015; 156: 1770–1781.

    Article  CAS  Google Scholar 

  59. Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, Linington C et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol 2013; 74: 815–825.

    Article  CAS  Google Scholar 

  60. Stadelmann C, Ludwin S, Tabira T, Guseo A, Lucchinetti CF, Leel-Ossy L et al. Tissue preconditioning may explain concentric lesions in Balo's type of multiple sclerosis. Brain 2005; 128: 979–987.

    Article  Google Scholar 

  61. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N . Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 2008; 131: 288–303.

    Article  Google Scholar 

  62. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10: 1252–1259.

    Article  CAS  Google Scholar 

  63. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL . MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011; 17: 64–70.

    Article  CAS  Google Scholar 

  64. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 2012; 18: 1077–1086.

    Article  CAS  Google Scholar 

  65. Pan W, Zhu S, Dai D, Liu Z, Li D, Li B et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun 2015; 6: 7096.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Fan Pan (Johns Hopkins University, USA) for sending us pCMV/HIF-1α as a gift. We thank Professor Dongqing Li (Wuhan University, China) for giving us the pSilencer2.1-U6/IL-17RA shRNA as a gift. We also thank Mr Gospel Asonye, a doctoral student at Molecular Medicine/Case Western Reserve University, and Mr Jordan Mclntee, a medical clinical scientist at the Clinical Laboratory/Beloit Health System, for editing the language of the paper. The study was supported by the grants from National Natural Science Foundations of China (31470853 and 81471626) and grants from Natural Science Foundations of Jiangsu Province in China (BK20131386 and BK20151168). The study was also supported by grants from Jiangsu Province Key Lab of Neurodegeneration (No.SJ11KF07), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Excellent Young or Middle-aged Teachers Project of Nanjing Medical University and Xuzhou Technology Bureau Foundation (KC14SH074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Qiu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, K., Pang, R., Zhao, C. et al. IL-17-triggered downregulation of miR-497 results in high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice. Cell Mol Immunol 14, 909–923 (2017). https://doi.org/10.1038/cmi.2017.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.12

Keywords

This article is cited by

Search

Quick links