Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies

Abstract

The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique β-ribbon ‘stalk’ and disulfide bonded ‘knob’ structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3′ end of IGHV1-7 encodes a longer V-region producing an extended F β-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sok D, Le KM, Vadnais M, Saye-Francisco KL, Jardine JG, Torres JL et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 2017; 548: 108–111.

    Article  CAS  Google Scholar 

  2. Lefranc MP. Immunoglobulin and T Cell Receptor Genes: IMGT((R)) and the Birth and Rise of Immunoinformatics. Front Immunol 2014; 5: 22.

    Article  Google Scholar 

  3. Lefranc M-P, Lefranc G. The Immunoglobulin FactsBook. Academic Press: London, UK. 2001, p 458.

    Google Scholar 

  4. Lefranc M-P, Lefranc G. The T cell receptor FactsBook. Academic Press: London, UK. 2001, p 398.

    Google Scholar 

  5. Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in antigen-specific immune receptors. J Exp Med 1994; 179: 323–328.

    Article  CAS  Google Scholar 

  6. Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol 1998; 275: 269–294.

    Article  CAS  Google Scholar 

  7. Ivanov II, Schelonka RL, Zhuang Y, Gartland GL, Zemlin M, Schroeder HW Jr. Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors. J Immunol 2005; 174: 7773–7780.

    Article  CAS  Google Scholar 

  8. Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 2003; 27: 55–77.

    Article  CAS  Google Scholar 

  9. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363: 446–448.

    Article  CAS  Google Scholar 

  10. Stanfield RL, Dooley H, Verdino P, Flajnik MF, Wilson IA. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 2007; 367: 358–372.

    Article  CAS  Google Scholar 

  11. Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science (New York, NY) 2004; 305: 1770–1773.

    Article  CAS  Google Scholar 

  12. de Los Rios M, Criscitiello MF, Smider VV. Structural and genetic diversity in antibody repertoires from diverse species. Curr Opin Struct Biol 2015; 33: 27–41.

    Article  CAS  Google Scholar 

  13. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011; 469: 175–180.

    Article  CAS  Google Scholar 

  14. Berens SJ, Wylie DE, Lopez OJ. Use of a single VH family and long CDR3s in the variable region of cattle Ig heavy chains. Int Immunol 1997; 9: 189–199.

    Article  CAS  Google Scholar 

  15. Saini SS, Allore B, Jacobs RM, Kaushik A. Exceptionally long CDR3H region with multiple cysteine residues in functional bovine IgM antibodies. Eur J Immunol 1999; 29: 2420–2426.

    Article  CAS  Google Scholar 

  16. Saini SS, Farrugia W, Ramsland PA, Kaushik AK. Bovine IgM antibodies with exceptionally long complementarity-determining region 3 of the heavy chain share unique structural properties conferring restricted VH+Vlambda pairings. Int Immunol 2003; 15: 845–853.

    Article  CAS  Google Scholar 

  17. Saini SS, Kaushik A. Extensive CDR3H length heterogeneity exists in bovine foetal VDJ rearrangements. Scand J Immunol 2002; 55: 140–148.

    Article  CAS  Google Scholar 

  18. Stanfield RL, Wilson IA, Smider VV. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Sci Immunol 2016; 1: aaf7962.

    Article  Google Scholar 

  19. Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O et al. Reshaping antibody diversity. Cell 2013; 153: 1379–1393.

    Article  CAS  Google Scholar 

  20. Schroeder JrHW, Hillson JL, Perlmutter RM. Structure and evolution of mammalian VH families. Int Immunol 1990; 2: 41–50.

    Article  Google Scholar 

  21. Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989; 59: 1035–1048.

    Article  CAS  Google Scholar 

  22. Tonegawa S. Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  Google Scholar 

  23. Ruiz M, Pallarès N, Contet V, Barbié V, Lefranc MP. The Human Immunoglobulin Heavy Diversity (IGHD) and Joining (IGHJ) Segments. Exp Clin Immunogenet 1999; 16: 173–184.

    Article  CAS  Google Scholar 

  24. Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H, Miyata T et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 1998; 188: 2151–2162.

    Article  CAS  Google Scholar 

  25. Kabat EA. Unique features of the variable regions of Bence Jones proteins and their possible relation to antibody complementarity. Proceedings of the National Academy of Sciences of the United States of AmericaProc Natl Acad Sci USA 1968; 59: 613–619.

    Article  CAS  Google Scholar 

  26. Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132: 211–250.

    Article  CAS  Google Scholar 

  27. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai S, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102: 553–563.

    Article  CAS  Google Scholar 

  28. Ma L, Qin T, Chu D, Cheng X, Wang J, Wang X et al. Internal duplications of DH, JH, and C region genes create an unusual IgH gene locus in cattle. J Immunol 2016; 196: 4358–4366.

    Article  CAS  Google Scholar 

  29. Liljavirta J, Ekman A, Knight JS, Pernthaner A, Iivanainen A, Niku M. Activation-induced cytidine deaminase (AID) is strongly expressed in the fetal bovine ileal Peyer's patch and spleen and is associated with expansion of the primary antibody repertoire in the absence of exogenous antigens. Mucosal Immunol 2013; 6: 942–949.

    Article  CAS  Google Scholar 

  30. Verma S, Aitken R. Somatic hypermutation leads to diversification of the heavy chain immunoglobulin repertoire in cattle. Vet Immunol Immunopathol 2012; 145: 14–22.

    Article  CAS  Google Scholar 

  31. Sun Y, Liu Z, Ren L, Wei Z, Wang P, Li N et al. Immunoglobulin genes and diversity: what we have learned from domestic animals. J Anim Sci Biotechnol 2012; 3: 18.

    Article  CAS  Google Scholar 

  32. Kozuka Y, Nasu T, Murakami T, Yasuda M. Comparative studies on the secondary lymphoid tissue areas in the chicken bursa of Fabricius and calf ileal Peyer's patch. Vet Immunol Immunopathol 2010; 133: 190–197.

    Article  CAS  Google Scholar 

  33. Ekman A, Pessa-Morikawa T, Liljavirta J, Niku M, Iivanainen A. B-cell development in bovine fetuses proceeds via a pre-B like cell in bone marrow and lymph nodes. Dev Comp Immunol 2010; 34: 896–903.

    Article  CAS  Google Scholar 

  34. Kaushik AK, Kehrli ME Jr., Kurtz A, Ng S, Koti M, Shojaei F et al. Somatic hypermutations and isotype restricted exceptionally long CDR3H contribute to antibody diversification in cattle. Vet Immunol Immunopathol 2009; 127: 106–113.

    Article  CAS  Google Scholar 

  35. Yasuda M, Jenne CN, Kennedy LJ, Reynolds JD. The sheep and cattle Peyer's patch as a site of B-cell development. Vet Res 2006; 37: 401–415.

    Article  CAS  Google Scholar 

  36. Neill JD, Ridpath JF, Liebler-Tenorio E. Global gene expression profiling of Bovine immature B cells using serial analysis of gene expression. Anim Biotechnol 2006; 17: 21–31.

    Article  CAS  Google Scholar 

  37. Koti M, Kataeva G, Kaushik A. Organization of DH-gene locus is distinct in cattle. Dev Biol 2008; 132: 307–313.

    CAS  Google Scholar 

  38. Koti M, Kataeva G, Kaushik AK. Novel atypical nucleotide insertions specifically at VH-DH junction generate exceptionally long CDR3H in cattle antibodies. Mol Immunol 2010; 47: 2119–2128.

    Article  CAS  Google Scholar 

  39. Rogozin IB, Diaz M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J Immunol 2004; 172: 3382–3384.

    Article  CAS  Google Scholar 

  40. Criscitiello MF, Ohta Y, Graham MD, Eubanks JO, Chen PL, Flajnik MF. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol 2012; 36: 521–533.

    Article  CAS  Google Scholar 

  41. Mashoof S, Pohlenz C, Chen PL, Deiss TC, Gatlin D 3rd, Buentello A et al. Expressed IgH mu and tau transcripts share diversity segment in ranched Thunnus orientalis. Dev Comp Immunol 2014; 43: 76–86.

    Article  CAS  Google Scholar 

  42. Breaux B, Deiss TC, Chen PL, Cruz-Schneider MP, Sena L, Hunter ME et al. The Florida manatee (Trichechus manatus latirostris) immunoglobulin heavy chain suggests the importance of clan III variable segments in repertoire diversity. Dev Comp Immunol 2017; 72: 57–68.

    Article  CAS  Google Scholar 

  43. Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 2012; 9: 425–426.

    Article  CAS  Google Scholar 

  44. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England) 2006; 22: 2695–2696.

    Article  CAS  Google Scholar 

  45. R Core TeamR: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. 2014.

    Google Scholar 

  46. Wickham H. ggplot2: elegant graphics for data analysis. Springer: New York. 2009.

    Book  Google Scholar 

  47. Hosseini A, Campbell G, Prorocic M, Aitken R. Duplicated copies of the bovine JH locus contribute to the Ig repertoire. Int Immunol 2004; 16: 843–852.

    Article  CAS  Google Scholar 

  48. Koti M, Kataeva G, Kaushik AK. Organization of D(H)-gene locus is distinct in cattle. Dev Biol 2008; 132: 307–313.

    CAS  Google Scholar 

  49. Liljavirta J, Niku M, Pessa-Morikawa T, Ekman A, Iivanainen A. Expansion of the preimmune antibody repertoire by junctional diversity in Bos taurus. PLoS ONE 2014; 9: e99808.

    Article  Google Scholar 

  50. Dong J, Panchakshari RA, Zhang T, Zhang Y, Hu J, Volpi SA et al. Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 2015; 525: 134–139.

    Article  CAS  Google Scholar 

  51. Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132: 211–250.

    Article  CAS  Google Scholar 

  52. Sok D, Le KM, Vadnais M, Saye-Francisco K, Jardine JG, Torres J et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 2017; 548: 108–111 advance online publication.

    Article  CAS  Google Scholar 

  53. Niku M, Liljavirta J, Durkin K, Schroderus E, Iivanainen A. The bovine genomic DNA sequence data reveal three IGHV subgroups, only one of which is functionally expressed. Dev Comp Immunol 2012; 37: 457–461.

    Article  CAS  Google Scholar 

  54. Butler JE. Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals. Rev Sci Tech 1998; 17: 43–70.

    Article  CAS  Google Scholar 

  55. Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaite A et al. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell 2015; 163: 1124–1137.

    Article  CAS  Google Scholar 

  56. Meissner F, Mann M. Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nat Immunol 2014; 15: 112–117.

    Article  CAS  Google Scholar 

  57. Kepler TB, Liao HX, Alam SM, Bhaskarabhatla R, Zhang R, Yandava C et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 2014; 16: 304–313.

    Article  CAS  Google Scholar 

  58. Briney BS, Willis JR, Crowe JE Jr. Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immunity 2012; 13: 523–529.

    Article  CAS  Google Scholar 

  59. Reason DC, Zhou J. Codon insertion and deletion functions as a somatic diversification mechanism in human antibody repertoires. Biology DirectBiol Direct 2006; 1: 24.

    Article  Google Scholar 

  60. Wilson PC, de Bouteiller O, Liu YJ, Potter K, Banchereau J, Capra JD et al. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med 1998; 187: 59–70.

    Article  CAS  Google Scholar 

  61. Wilson P, Liu YJ, Banchereau J, Capra JD, Pascual V. Amino acid insertions and deletions contribute to diversify the human Ig repertoire. Immunol Rev 1998; 162: 143–151.

    Article  CAS  Google Scholar 

  62. Goossens T, Klein U, Kuppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proceedings of the National Academy of Sciences of the United States of AmericaProc Natl Acad Sci USA 1998; 95: 2463–2468.

    Article  CAS  Google Scholar 

  63. Criscitiello MF, Benedetto R, Antao A, Wilson MR, Chinchar VG, Miller NW et al. Beta 2-microglobulin of ictalurid catfishes. Immunogenetics 1998; 48: 339–343.

    Article  CAS  Google Scholar 

  64. Yeap L-S, Hwang Joyce K, Du Z, Meyers Robin M, Meng F-L, Jakubauskaitė A et al. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell 2015; 163: 1124–1137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 GM105826-01 to VVS, R21 AI120791 to VVS, WM and MFC and NSF grant #IOS1257829 to MFC. AT is supported by Scripps Genomic Medicine, an NIH-NCATS Clinical and Translational Science Award (CTSA; 5 UL1 RR025774).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael F Criscitiello or Vaughn V Smider.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deiss, T., Vadnais, M., Wang, F. et al. Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell Mol Immunol 16, 53–64 (2019). https://doi.org/10.1038/cmi.2017.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.117

This article is cited by

Search

Quick links