Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses

Abstract

RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3′UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kafasla P, Skliris A, Kontoyiannis DL . Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 2014; 15: 492–502.

    Article  CAS  PubMed  Google Scholar 

  2. Ufer C . The biology of the RNA binding protein guanine-rich sequence binding factor 1. Curr Protein Pept Sci 2012; 13: 347–357.

    Article  CAS  PubMed  Google Scholar 

  3. Moreno-Moya JM, Vilella F, Simon C . MicroRNA: key gene expression regulators. Fertil Steril 2014; 101: 1516–1523.

    Article  CAS  PubMed  Google Scholar 

  4. Connerty P, Ahadi A, Hutvagner G . RNA binding proteins in the miRNA pathway. Int J Mol Sci 2016; 17: 31.

    Article  CAS  Google Scholar 

  5. van Kouwenhove M, Kedde M, Agami R . MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011; 11: 644–656.

    Article  CAS  PubMed  Google Scholar 

  6. Gerstberger S, Hafner M, Tuschl T . A census of human RNA-binding proteins. Nat Rev Genet 2014; 15: 829–845.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 1996; 4: 445–454.

    Article  CAS  PubMed  Google Scholar 

  8. Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G et al. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell 2005; 19: 777–789.

    Article  CAS  PubMed  Google Scholar 

  9. Lu JY, Sadri N, Schneider RJ . Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 2006; 20: 3174–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poddar D, Basu A, Baldwin WM, Kondratov RV, Barik S, Mazumder B . An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. J Immunol 2013; 190: 3600–3612.

    Article  CAS  PubMed  Google Scholar 

  11. Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, Fitch J et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 2013; 38: 669–680.

    Article  CAS  PubMed  Google Scholar 

  12. Moulton VR, Grammatikos AP, Fitzgerald LM, Tsokos GC . Splicing factor SF2/ASF rescues IL-2 production in T cells from systemic lupus erythematosus patients by activating IL-2 transcription. Proc Natl Acad Sci USA 2013; 110: 1845–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K et al. The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol 2011; 12: 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  14. Qiang X, Yang WL, Wu R, Zhou M, Jacob A, Dong W et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 2013; 19: 1489–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masuda K, Ripley B, Nishimura R, Mino T, Takeuchi O, Shioi G et al. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc Natl Acad Sci USA 2013; 110: 9409–94014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivanov SS, Roy CR . Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 2013; 14: 1219–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolognese AC, Sharma A, Yang WL, Nicastro J, Coppa GF, Wang P . Cold-inducible RNA-binding protein activates splenic T cells during sepsis in a TLR4-dependent manner. Cell Mol Immunol 2016.

  18. Zhang T, Kruys V, Huez G, Gueydan C . AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 2002; 30: 952–958.

    Article  CAS  PubMed  Google Scholar 

  19. Stoecklin G, Lu M, Rattenbacher B, Moroni C . A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Mol Cell Biol 2003; 23: 3506–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullner EW, Kuhn LC . A stem-loop in the 3' untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 1988; 53: 815–825.

    Article  CAS  PubMed  Google Scholar 

  21. Leppek K, Schott J, Reitter S, Poetz F, Hammond MC, Stoecklin G . Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 2013; 153: 869–881.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM et al. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 2006; 98: 1177–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X et al. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res 2012; 40: 6957–6965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yokogawa M, Tsushima T, Noda NN, Kumeta H, Enokizono Y, Yamashita K et al. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci Rep 2016; 6: 22324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu J, Fu S, Peng W, Rao Z . MCP-1-induced protein-1, an immune regulator. Protein Cell 2012; 3: 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 2015; 161: 1058–1073.

    Article  CAS  PubMed  Google Scholar 

  27. Uehata T, Akira S . mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochim Biophys Acta 2013; 1829: 708–713.

    Article  CAS  PubMed  Google Scholar 

  28. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 2013; 153: 1036–1049.

    Article  CAS  PubMed  Google Scholar 

  29. Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska D, Palmer K et al. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol 2010; 11: 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Skalniak L, Mizgalska D, Zarebski A, Wyrzykowska P, Koj A, Jura J . Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J 2009; 276: 5892–5905.

    Article  CAS  PubMed  Google Scholar 

  31. Lin RJ, Chu JS, Chien HL, Tseng CH, Ko PC, Mei YY et al. MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J Immunol 2014; 193: 4159–4168.

    Article  CAS  PubMed  Google Scholar 

  32. Lim YJ, Choi JA, Lee JH, Choi CH, Kim HJ, Song CH . Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4. Apoptosis 2015; 20: 358–370.

    Article  CAS  PubMed  Google Scholar 

  33. Schott J, Reitter S, Philipp J, Haneke K, Schafer H, Stoecklin G . Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 2014; 10: e1004368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 2008; 283: 6337–6346.

    Article  CAS  PubMed  Google Scholar 

  35. Liang J, Wang J, Saad Y, Warble L, Becerra E, Kolattukudy PE . Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines. J Neuroinflammation 2011; 8: 182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu S, Qiu C, Miao R, Zhou J, Lee A, Liu B et al. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc Natl Acad Sci USA 2013; 110: 19083–19088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC et al. MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res 2013; 41: 3314–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang S, Miao R, Zhou Z, Wang T, Liu J, Liu G et al. MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell Signal 2013; 25: 1228–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruiz-Romeu E, Ferran M, Gimenez-Arnau A, Bugara B, Lipert B, Jura J et al. MCPIP1 RNase is aberrantly distributed in psoriatic epidermis and rapidly induced by IL-17A. J Invest Dermatol 2016; 136: 1599–1607.

    Article  CAS  PubMed  Google Scholar 

  40. Somma D, Mastrovito P, Grieco M, Lavorgna A, Pignalosa A, Formisano L et al. CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J Immunol 2015; 194: 3286–3294.

    Article  CAS  PubMed  Google Scholar 

  41. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G . S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 2011; 9: 133–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu XX, Wang C, Huang SF, Chen Q, Hu YF, Zhou L et al. Regnase-1 in microglia negatively regulates high mobility group box 1-mediated inflammation and neuronal injury. Sci Rep 2016; 6: 24073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skalniak L, Koj A, Jura J . Proteasome inhibitor MG-132 induces MCPIP1 expression. FEBS J 2013; 280: 2665–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan X, Gao J, Shi Z, Tai S, Chan LL, Yang Y et al. MG132 induces expression of monocyte chemotactic protein-induced protein 1 in vascular smooth muscle cells. J Cell Physiol 2017; 232: 122–128.

    Article  CAS  PubMed  Google Scholar 

  45. Makki MS, Haqqi TM . Histone deacetylase inhibitor vorinostat (SAHA, MK0683) perturb miR-9-MCPIP1 axis to block IL-1beta-induced IL-6 expression in human OA chondrocytes. Connect Tissue Res 2016; 12: 1–12.

    Google Scholar 

  46. Wang X, Zhang Y, Zhang W, Liu H, Zhou Z, Dai X et al. MCPIP1 regulates alveolar macrophage apoptosis and pulmonary fibroblast activation after in vitro exposure to silica. Toxicol Sci 2016; 151: 126–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu H, Dai X, Cheng Y, Fang S, Zhang Y, Wang X et al. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol 2016; 310: 121–132.

    Article  Google Scholar 

  48. Chao J, Dai X, Pena T, Doyle DA, Guenther TM, Carlson MA . MCPIP1 regulates fibroblast migration in 3-D collagen matrices downstream of MAP kinases and NF-kappaB. J Invest Dermatol 2015; 135: 2944–2954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Da J, Zhuo M, Qian M . MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC. Int J Clin Exp Pathol 2015; 8: 10625–10634.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Monk JM, Liddle DM, De Boer AA, Brown MJ, Power KA, Ma DW et al. Fish-oil-derived n-3 PUFAs reduce inflammatory and chemotactic adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes. J Nutr 2015; 145: 829–838.

    Article  CAS  PubMed  Google Scholar 

  51. Govey PM, Kawasawa YI, Donahue HJ . Mapping the osteocytic cell response to fluid flow using RNA-Seq. J Biomech 2015; 48: 4327–4332.

    Article  PubMed  Google Scholar 

  52. Jeltsch KM, Hu D, Brenner S, Zoller J, Heinz GA, Nagel D et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat Immunol 2014; 15: 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  53. Li H, He H, Gong L, Fu M, Wang TT . Short communication: preferential killing of HIV latently infected CD4(+) T Cells by MALT1 inhibitor. AIDS Res Hum Retroviruses 2016; 32: 174–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yao H, Ma R, Yang L, Hu G, Chen X, Duan M et al. MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun 2014; 5: 4386.

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Chao J, Kook YH, Gao Y, Yao H, Buch SJ . Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis 2013; 4: e960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Makki MS, Haseeb A, Haqqi TM . MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1beta-stimulated human chondrocytes. Arthritis Rheumatol 2015; 67: 2117–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu Y, An BY, Xi XB, Li ZW, Li FY . MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 2016; 121: 233–240.

    Article  CAS  PubMed  Google Scholar 

  58. Dong C, Sun X, Guan Z, Zhang M, Duan M . Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1. J Med Virol 2017; 89: 41–48.

    Article  CAS  PubMed  Google Scholar 

  59. Makki MS, Haqqi TM . miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp Mol Med 2015; 47: e189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cheng Y, Du L, Jiao H, Zhu H, Xu K, Guo S et al. Mmu-miR-27a-5p-Dependent Upregulation of MCPIP1 Inhibits the Inflammatory Response in LPS-Induced RAW264.7 Macrophage Cells. Biomed Res Int 2015; 2015: 607692.

    PubMed  PubMed Central  Google Scholar 

  61. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 2011; 44: 424–436.

    Article  CAS  PubMed  Google Scholar 

  62. Choudhury NR, Michlewski G . Terminal loop-mediated control of microRNA biogenesis. Biochem Soc Trans 2012; 40: 789–793.

    Article  CAS  PubMed  Google Scholar 

  63. Qu B, Cao J, Zhang F, Cui H, Teng J, Li J et al. Type I interferon inhibition of microRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol 2015; 67: 3209–3218.

    Article  CAS  PubMed  Google Scholar 

  64. Boratyn E, Nowak I, Horwacik I, Durbas M, Mistarz A, Kukla M et al. Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including microRNA, in human neuroblastoma cells. J Cell Biochem 2016; 117: 694–707.

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki HI, Katsura A, Miyazono K . A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B. Cancer Sci 2015; 106: 1174–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 2009; 458: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  67. Wawro M, Kochan J, Kasza A . The perplexities of the ZC3H12A self-mRNA regulation. Acta Biochim Pol 2016; 63: 411–415.

    Article  CAS  PubMed  Google Scholar 

  68. Kochan J, Wawro M, Kasza A . Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH. Biotechniques 2015; 59: 209–212.

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Cao W, Liu H, Zhang W, Liu X, Cai Z et al. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS ONE 2012; 7: e49841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mizgalska D, Wegrzyn P, Murzyn K, Kasza A, Koj A, Jura J et al. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. Febs J 2009; 276: 7386–7399.

    Article  CAS  PubMed  Google Scholar 

  71. Kochan J, Wawro M, Kasza A . IF-combined smRNA FISH reveals interaction of MCPIP1 protein with IER3 mRNA. Biol Open 2016; 5: 889–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou Z, Miao R, Huang S, Elder B, Quinn T, Papasian CJ et al. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms. PLoS ONE 2013; 8: e82542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Akira S . Regnase-1, a ribonuclease involved in the regulation of immune responses. Cold Spring Harb Symp Quant Biol 2013; 78: 51–60.

    Article  PubMed  Google Scholar 

  74. Miao R, Huang S, Zhou Z, Quinn T, Van Treeck B, Nayyar T et al. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol Cell Biol 2013; 91: 368–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu F, Du F, Wang Y, Huang S, Miao R, Major AS et al. Bone marrow deficiency of MCPIP1 results in severe multi-organ inflammation but diminishes atherogenesis in hyperlipidemic mice. PLoS One 2013; 8: e80089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE . Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 2000; 87: 378–384.

    Article  CAS  PubMed  Google Scholar 

  77. Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R et al. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am J Pathol 1998; 152: 101–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Niu J, Wang K, Graham S, Azfer A, Kolattukudy PE . MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, CyrillicB kinase activation. J Mol Cell Cardiol 2011; 51: 177–186.

    Article  CAS  PubMed  Google Scholar 

  79. Niu J, Jin Z, Kim H, Kolattukudy PE . MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-kappaB activation and suppressing inflammation-associated microRNA expression. Basic Res Cardiol 2015; 110: 26.

    Article  PubMed  CAS  Google Scholar 

  80. Labedz-Maslowska A, Lipert B, Berdecka D, Kedracka-Krok S, Jankowska U, Kamycka E et al. Monocyte chemoattractant protein-induced protein 1 (MCPIP1) enhances angiogenic and cardiomyogenic potential of murine bone marrow-derived mesenchymal stem cells. PLoS ONE 2015; 10: e0133746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jin Z, Liang J, Wang J, Kolattukudy PE . Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1. J Neuroinflammation 2013; 10: 63.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin Z, Liang J, Wang J, Kolattukudy PE . MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo. J Neuroinflammation 2015; 12: 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE . Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 2008; 283: 14542–14551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niu J, Wang K, Zhelyabovska O, Saad Y, Kolattukudy PE . MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther 2013; 347: 288–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vrotsos EG, Kolattukudy PE, Sugaya K . MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 2009; 79: 97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Younce CW, Azfer A, Kolattukudy PE . MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J Biol Chem 2009; 284: 27620–27628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Younce C, Kolattukudy P . MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 2012; 30: 307–320.

    Article  CAS  PubMed  Google Scholar 

  88. Lipert B, Wegrzyn P, Sell H, Eckel J, Winiarski M, Budzynski A et al. Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells. Biochim Biophys Acta 2014; 1843: 780–788.

    Article  CAS  PubMed  Google Scholar 

  89. Qi D, Huang S, Miao R, She ZG, Quinn T, Chang Y et al. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011; 286: 41692–41700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abe H, Hayes CN, Ochi H, Tsuge M, Miki D, Hiraga N et al. Inverse association of IL28B genotype and liver mRNA expression of genes promoting or suppressing antiviral state. J Med Virol 2011; 83: 1597–1607.

    Article  CAS  PubMed  Google Scholar 

  91. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009; 461: 399–401.

    Article  CAS  PubMed  Google Scholar 

  92. Li H, Wang TT . MCPIP1/regnase-I inhibits simian immunodeficiency virus and is not counteracted by Vpx. J Gen Virol 2016; 97: 1693–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Blazusiak E, Florczyk D, Jura J, Potempa J, Koziel J . Differential regulation by Toll-like receptor agonists reveals that MCPIP1 is the potent regulator of innate immunity in bacterial and viral infections. J Innate Immun 2013; 5: 15–23.

    Article  CAS  PubMed  Google Scholar 

  94. Park KH, Jung J, Lee JH, Hong YH . Blood transcriptome profiling in myasthenia gravis patients to assess disease activity: a pilot RNA-seq study. Exp Neurobiol 2016; 25: 40–47.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Xie S, Chen Z, Wang Q, Song X, Zhang L . Comparisons of gene expression in normal, lesional, and non-lesional psoriatic skin using DNA microarray techniques. Int J Dermatol 2014; 53: 1213–1220.

    Article  CAS  PubMed  Google Scholar 

  96. He M, Liang X, He L, Wen W, Zhao S, Wen L et al. Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein. Arterioscler Thromb Vasc Biol 2013; 33: 1384–1391.

    Article  CAS  PubMed  Google Scholar 

  97. Jeltsch KM, Heissmeyer V . Regulation of T cell signaling and autoimmunity by RNA-binding proteins. Curr Opin Immunol 2016; 39: 127–135.

    Article  CAS  PubMed  Google Scholar 

  98. Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 2015; 43: 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Skalniak A, Boratyn E, Tyrkalska SD, Horwacik I, Durbas M, Lastowska M et al. Expression of the monocyte chemotactic protein-1-induced protein 1 decreases human neuroblastoma cell survival. Oncol Rep 2014; 31: 2385–2392.

    Article  CAS  PubMed  Google Scholar 

  100. Lyu JH, Park DW, Huang B, Kang SH, Lee SJ, Lee C et al. RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J Cell Biochem 2015; 116: 260–267.

    Article  CAS  PubMed  Google Scholar 

  101. Lu W, Ning H, Gu L, Peng H, Wang Q, Hou R et al. MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res 2016; 76: 1429–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T et al. USP10 inhibits genotoxic NF-kappaB activation by MCPIP1-facilitated deubiquitination of NEMO. Embo J 2013; 32: 3206–3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang W, Huang X, Xin HB, Fu M, Xue A, Wu ZH . TRAF family member-associated NF-kappaB activator (TANK) inhibits genotoxic nuclear factor kappaB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem 2015; 290: 13372–13385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E et al. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol 2015; 194: 6011–6023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Distinguished Professorship Program of Jiangsu Province to YF; the National Natural Science Foundation of China (81641164; 81600386; 81471539 and 30801350); and the Natural Science Foundation of Jiangsu Province (BK20141236). EWH is supported by NIH grants RO1CA135362 and R21AI112763. We apologize to the many scientists who made contributions to the field but have not been cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Fan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Yang, R., Chen, X. et al. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 14, 412–422 (2017). https://doi.org/10.1038/cmi.2016.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.70

Keywords

This article is cited by

Search

Quick links