Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cellular and molecular regulation of innate inflammatory responses

Abstract

Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kotas ME, Medzhitov R . Homeostasis, inflammation, and disease susceptibility. Cell 2015; 160: 816–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Takeuchi O, Akira S . Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  3. Hunter CA, Jones SA . IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16: 448–457.

    CAS  PubMed  Google Scholar 

  4. Wack A, Terczyńska-Dyla E, Hartmann R . Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16: 802–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwasaki A, Medzhitov R . Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16: 343–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    CAS  PubMed  Google Scholar 

  7. Ma Z, Zhang E, Yang D, Lu M . Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol 2015; 12: 273–282.

    CAS  PubMed  Google Scholar 

  8. Li JY, Liu Y, Gao XX, Gao X, Cai H . TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro. Cell Mol Immunol 2014; 11: 477–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol 2015; 16: 1142–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stuart LM, Lacy-Hulbert A . De-Mst-ifying microbicidal killing. Nat Immunol 2015; 16: 1107–1118.

    CAS  PubMed  Google Scholar 

  11. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006; 314: 997–1001.

    CAS  PubMed  Google Scholar 

  12. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105.

    CAS  PubMed  Google Scholar 

  13. Wu J, Sun L, Chen X, Du F, Shi H, Chen C et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339: 826–830.

    CAS  PubMed  Google Scholar 

  14. Sun L, Wu J, Du F, Chen X, Chen ZJ . Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339: 786–791.

    CAS  PubMed  Google Scholar 

  15. Shi H, Wu J, Chen ZJ, Chen C . Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proc Natl Acad Sci USA 2015; 112: 8947–8952.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10: 266–272.

    PubMed  Google Scholar 

  18. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ . The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 2011; 12: 959–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 2012; 13: 1155–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roth S, Rottach A, Lotz-Havla AS, Laux V, Muschaweckh A, Gersting SW et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1β production. Nat Immunol 2014; 15: 538–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowie AG . Rad50 and CARD9, missing links in cytosolic DNA-stimulated inflammation. Nat Immunol 2014; 15: 534–536.

    CAS  PubMed  Google Scholar 

  22. Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 2010; 11: 487–494.

    CAS  PubMed  Google Scholar 

  23. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448: 501–505.

    CAS  PubMed  Google Scholar 

  24. Pichlmair A, Lassnig C, Eberle CA, Górna MW, Baumann CL, Burkard TR et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 2011; 12: 624–630.

    CAS  PubMed  Google Scholar 

  25. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 2015; 16: 1025–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiang JJ, Gack MU . Reading the fine print: sequence-specific activation of cGAS. Nat Immunol 2015; 16: 1009–1010.

    CAS  PubMed  Google Scholar 

  27. Xia P, Wang S, Ye B, Du Y, Huang G, Zhu P et al. Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol 2015; 16: 366–375.

    CAS  PubMed  Google Scholar 

  28. Mankan AK1 . Hornung V1. Sox2 as a servant of two masters. Nat Immunol 2015; 16: 335–336.

    CAS  PubMed  Google Scholar 

  29. Yu Z, Chen T, Cao X . Neutrophil sensing of cytoplasmic, pathogenic DNA in a cGAS-STING-independent manner. Cell Mol Immunol 2016; 13: 411–414.

    PubMed  Google Scholar 

  30. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4: 702–707.

    CAS  PubMed  Google Scholar 

  31. Rauch I, Tenthorey JL, Nichols RD, Al Moussawi K, Kang JJ, Kang C et al. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med 2016; 213: 657–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11: 55–62.

    CAS  PubMed  Google Scholar 

  33. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T . Autophagy and autophagy-related proteins in the immune system. Nat Immunol 2015; 16: 1014–1024.

    CAS  PubMed  Google Scholar 

  34. Henao-Mejia J, Elinav E, Strowig T, Flavell RA . Inflammasomes: far beyond inflammation. Nat Immunol 2012; 13: 321–324.

    CAS  PubMed  Google Scholar 

  35. Strowig T, Henao-Mejia J, Elinav E, Flavell R . Inflammasomes in health and disease. Nature 2012; 481: 278–286.

    CAS  PubMed  Google Scholar 

  36. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat Immunol 2014; 15: 727–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014; 15: 738–748.

    CAS  PubMed  Google Scholar 

  38. Man SM, Karki R, Malireddi RK, Neale G, Vogel P, Yamamoto M et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol 2015; 16: 467–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Rühl S et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol 2015; 16: 476–484.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for in terleukin 1 beta production. Nat Immunol 2010; 11: 63–69.

    CAS  PubMed  Google Scholar 

  41. Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol 2014; 15: 1126–1133.

    CAS  PubMed  Google Scholar 

  42. Piccirillo CA, Bjur E, Topisirovic I, Sonenberg N, Larsson O . Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15: 503–511.

    CAS  PubMed  Google Scholar 

  43. Kafasla P, Skliris A, Kontoyiannis DL . Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 2014; 15: 492–502.

    CAS  PubMed  Google Scholar 

  44. Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK, Young RA . Coordinated binding of NF-κB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci USA 2006; 103: 5899–5904.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Cao X . Long noncoding RNAs in innate immunity. Cell Mol Immunol 2016; 13: 138–147.

    PubMed  Google Scholar 

  46. Turner M, Galloway A, Vigorito E . Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol 2014; 15: 484–491.

    CAS  PubMed  Google Scholar 

  47. Nishitsuji H, Ujino S, Yoshio S, Sugiyama M, Mizokami M, Kanto T et al. Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression. Proc Natl Acad Sci USA 2016; 113: 10388–10393.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010; 32: 317–328.

    CAS  PubMed  Google Scholar 

  50. Li X, Zhang Q, Ding Y, Liu Y, Zhao D, Zhao K et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol 2016; 17: 806–815.

    CAS  PubMed  Google Scholar 

  51. Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminathan S, Bosnjak B et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol 2015; 16: 67–74.

    CAS  PubMed  Google Scholar 

  52. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 2015; 525: 389–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Berrebi D, Bruscoli S, Cohen N, Foussat A, Migliorati G, Bouchet-Delbos L et al. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 2003; 101: 729–738.

    CAS  PubMed  Google Scholar 

  54. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 2005; 122: 707–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, Rosenfeld MG et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 2009; 23: 681–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yuk JM, Shin DM, Lee HM, Kim JJ, Kim SW, Jin HS et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol 2011; 12: 742–751.

    CAS  PubMed  Google Scholar 

  57. Li L, Liu Y, Chen HZ, Li FW, Wu JF, Zhang HK et al. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol 2015; 11: 339–346.

    CAS  PubMed  Google Scholar 

  58. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009; 137: 47–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shaked I, Hanna RN, Shaked H, Chodaczek G, Nowyhed HN, Tweet G et al. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat Immunol 2015; 16: 1228–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mowen KA, David M . Unconventional post-translational modifications in immunological signaling. Nat Immunol 2014; 15: 512–520.

    CAS  PubMed  Google Scholar 

  61. Liu J, Qian C, Cao X . Post-translational modification control of innate immunity. Immunity 2016; 45: 15–30.

    PubMed  Google Scholar 

  62. Harikumar KB, Yester JW, Surace MJ, Oyeniran C, Price MM, Huang WC et al. K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat Immunol 2014; 15: 231–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang T, Wang J . K63-linked polyubiquitination of IRF1: an essential step in the IL-1 signaling cascade. Cell Mol Immunol 2014; 11: 407–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gunawan M, Venkatesan N, Loh JT, Wong JF, Berger H, Neo WH et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol 2015; 16: 505–516.

    CAS  PubMed  Google Scholar 

  65. Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, Jacob A et al. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat Immunol 2015; 16: 737–745.

    CAS  PubMed  Google Scholar 

  66. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060.

    CAS  PubMed  Google Scholar 

  67. Kawagoe T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, Tsujimura T et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 2009; 10: 965–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen P . Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nat Immunol 2014; 15: 521–529.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Heaton SM, Borg NA, Dixit VM . Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 2016; 213: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu H, You M, Shi H, Hou Y . Ubiquitin-mediated NFκB degradation pathway. Cell Mol Immunol 2015; 12: 653–655.

    CAS  PubMed  Google Scholar 

  71. Jiao S, Zhang Z, Li C, Huang M, Shi Z, Wang Y et al. The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nat Immunol 2015; 16: 246–257.

    CAS  PubMed  Google Scholar 

  72. Liu J, Han C, Xie B, Wu Y, Liu S, Chen K et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat Immunol 2014; 15: 612–622.

    CAS  PubMed  Google Scholar 

  73. Liu J, Liu S, Xia M, Xu S, Wang C, Bao Y et al. Rhomboid domain-containing protein 3 is a negative regulator of TLR3-triggered natural killer cell activation. Proc Natl Acad Sci USA 2013; 110: 7814–7819.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Adrain C, Zettl M, Christova Y, Taylor N, Freeman M . Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 2012; 335: 225–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McIlwain DR, Lang PA, Maretzky T, Hamada K, Ohishi K, Maney SK et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 2012; 335: 229–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Luo WW, Li S, Li C, Lian H, Yang Q, Zhong B et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol 2016; 17: 1057–1066.

    CAS  PubMed  Google Scholar 

  77. Tiruppathi C, Soni D, Wang DM, Xue J, Singh V, Thippegowda PB et al. The transcription factor DREAM represses the deubiquitinase A20 and mediates inflammation. Nat Immunol 2014; 15: 239–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xia M, Liu J, Wu X, Liu S, Li G, Han C et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 2013; 39: 470–481.

    CAS  PubMed  Google Scholar 

  79. Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci USA 2016; 113: 9581–9586.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol 2016; 17: 241–249.

    CAS  PubMed  Google Scholar 

  81. Champion BR, Fisher K, Seymour L . A PTENtial cause for the selectivity of oncolytic viruses? Nat Immunol 2016; 17: 225–226.

    CAS  PubMed  Google Scholar 

  82. Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R et al. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol; e-pub ahead of print 3 October 2016; doi:10.1038/ni.3580.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Decque A, Joffre O, Magalhaes JG, Cossec JC, Blecher-Gonen R, Lapaquette P et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol 2016; 17: 140–149.

    CAS  PubMed  Google Scholar 

  84. Rathinam VA, Vanaja SK, Fitzgerald KA . Regulation of inflammasome signaling. Nat Immunol 2012; 13: 333–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jo EK, Kim JK, Shin DM, Sasakawa C . Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016; 13: 148–159.

    CAS  PubMed  Google Scholar 

  86. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV et al. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014; 15: 343–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Krishnaswamy JK, Liu D, Eisenbarth SC . POP goes the inflammasome. Nat Immunol 2014; 15: 311–313.

    CAS  PubMed  Google Scholar 

  88. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015; 160: 62–73.

    CAS  PubMed  Google Scholar 

  89. Mortimer L, Moreau F, MacDonald JA, Chadee K . NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol 2016; 17: 1176–1186.

    CAS  PubMed  Google Scholar 

  90. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514: 187–192.

    CAS  PubMed  Google Scholar 

  91. Liu W, Menoret A, Vella AT . Responses to LPS boost effector CD8 T-cell accumulation outside of signals 1 and 2. Cell Mol Immunol; e-pub ahead of print 20 July 2015; doi:10.1038/cmi.2015.69.

    Google Scholar 

  92. Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 2015; 16: 426–433.

    CAS  PubMed  Google Scholar 

  93. Zipfel C . A new receptor for LPS. Nat Immunol 2015; 16: 340–341.

    CAS  PubMed  Google Scholar 

  94. Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol 2012; 13: 659–666.

    CAS  PubMed  Google Scholar 

  95. Forsbach A, Müller C, Montino C, Kritzler A, Nguyen T, Weeratna R et al. Negative regulation of the type I interferon signaling pathway by synthetic Toll-like receptor 7 ligands. J Interferon Cytokine Res 2012; 32: 254–268.

    CAS  PubMed  Google Scholar 

  96. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 2010; 141: 483–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 2008; 451: 573–577.

    CAS  PubMed  Google Scholar 

  98. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 2011; 34: 854–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang L, Mo J, Swanson KV, Wen H, Petrucelli A, Gregory SM et al. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 2014; 40: 329–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cui J, Li Y, Zhu L, Liu D, Songyang Z, Wang HY et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 2012; 13: 387–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreulx D, Caroff M et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 2005; 35: 2459–2470.

    CAS  PubMed  Google Scholar 

  102. Tada H, Aiba S, Shibata K, Ohteki T, Takada H . Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun 2005; 73: 7967–7976.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiao D, Wong CK, Qiu HN, Dong J, Cai Z, Chu M et al. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell Mol Immunol 2016; 13: 535–550.

    CAS  PubMed  Google Scholar 

  104. Watanabe T, Kitani A, Murray PJ, Strober W . NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004; 5: 800–808.

    CAS  PubMed  Google Scholar 

  105. Watanabe T, Kitani A, Murray PJ, Wakatsuki Y, Fuss IJ, Strober W . Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 2006; 25: 473–485.

    CAS  PubMed  Google Scholar 

  106. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 2011; 34: 843–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol 2012; 13: 823–831.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012; 488: 389–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 2012; 36: 742–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li W, Yang J, Zhang E, Zhong M, Xiao Y, Yu J et al. Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin. Cell Mol Immunol 2016; 13: 514–523.

    PubMed  Google Scholar 

  111. Rivera A, Siracusa MC, Yap GS, Gause WC . Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol 2016; 17: 356–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M . Immune cells in term and preterm labor. Cell Mol Immunol 2014; 11: 571–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Whitsett JA, Alenghat T . Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015; 16: 27–35.

    CAS  PubMed  Google Scholar 

  114. Nauseef WM, Borregaard N . Neutrophils at work. Nat Immunol 2014; 15: 602–611.

    CAS  PubMed  Google Scholar 

  115. Lakschevitz FS, Visser MB, Sun C, Glogauer M . Neutrophil transcriptional profile changes during transit from bone marrow to sites of inflammation. Cell Mol Immunol 2015; 12: 53–65.

    CAS  PubMed  Google Scholar 

  116. Fahey S, Dempsey E, Long A . The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2014; 11: 25–40.

    CAS  PubMed  Google Scholar 

  117. Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol 2014; 15: 161–167.

    CAS  PubMed  Google Scholar 

  118. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, Lum J et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 2015; 16: 718–728.

    CAS  PubMed  Google Scholar 

  119. Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, Kc W et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor. Nat Immunol 2015; 16: 708–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Johanson TM, Keown AA, Cmero M, Yeo JH, Kumar A, Lew AM et al. Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis. Nat Immunol 2015; 16: 1134–1141.

    CAS  PubMed  Google Scholar 

  121. van der Veen AG, Maillard PV . Reis e Sousa C. Drosha cuts the tethers of myelopoiesis. Nat Immunol 2015; 16: 1110–1112.

    CAS  PubMed  Google Scholar 

  122. Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, Okada T et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol 2014; 15: 1064–1069.

    CAS  PubMed  Google Scholar 

  123. Mueller SN . Skin DCs cluster for efficient T cell activation. Nat Immunol 2014; 15: 1004–1005.

    CAS  PubMed  Google Scholar 

  124. Ulvmar MH, Werth K, Braun A, Kelay P, Hub E, Eller K et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat Immunol 2014; 15: 623–630.

    CAS  PubMed  Google Scholar 

  125. Woodruff MC, Turley SJ . Chemokine 'grooming' by cLECs directs DC migration. Nat Immunol 2014; 15: 595–596.

    CAS  PubMed  Google Scholar 

  126. Loschko J, Schreiber HA, Rieke GJ, Esterházy D, Meredith MM, Pedicord VA et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J Exp Med 2016; 213: 517–534.

    PubMed  PubMed Central  Google Scholar 

  127. Panek CA, Ramos MV, Mejias MP, Abrey-Recalde MJ, Fernandez-Brando RJ, Gori MS et al. Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation. Cell Mol Immunol 2015; 12: 669–680.

    CAS  PubMed  Google Scholar 

  128. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol 2014; 15: 323–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. O'Neill LA . Glycolytic reprogramming by TLRs in dendritic cells. Nat Immunol 2014; 15: 314–315.

    CAS  PubMed  Google Scholar 

  130. Liu J, Cao X . Regulatory dendritic cells in autoimmunity: a comprehensive review. J Autoimmun 2015; 63: 1–12.

    CAS  PubMed  Google Scholar 

  131. Kopf M, Schneider C, Nobs SP . The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 2015; 16: 36–44.

    CAS  PubMed  Google Scholar 

  132. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15: 98–108.

    CAS  PubMed  Google Scholar 

  133. Gehring AJ, Ann D'Angelo J . Dissecting the dendritic cell controversy in chronic hepatitis B virus infection. Cell Mol Immunol 2015; 12: 283–291.

    CAS  PubMed  Google Scholar 

  134. Bertoletti A, Kennedy PT . The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell Mol Immunol 2015; 12: 258–263.

    CAS  PubMed  Google Scholar 

  135. Liu Y, Cao X . Intratumoral dendritic cells in the anti-tumor immune response. Cell Mol Immunol 2015; 12: 387–390.

    PubMed  PubMed Central  Google Scholar 

  136. Weist BM, Kurd N, Boussier J, Chan SW, Robey EA . Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat Immunol 2015; 16: 635–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Esterházy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D . Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat Immunol 2016; 17: 545–555.

    PubMed  PubMed Central  Google Scholar 

  138. Romanets-Korbut O, Kovalevska LM, Seya T, Sidorenko SP, Horvat B . Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cell Mol Immunol; e-pub ahead of print 15 June 2015; doi:10.1038/cmi.2015.55.

    Google Scholar 

  139. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014; 158: 506–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Samie M, Cresswell P . The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat Immunol 2015; 16: 729–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L, Vetters J et al. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat Immunol 2014; 15: 248–257.

    CAS  PubMed  Google Scholar 

  142. Subramanian M, Tabas I . A new RIDDle in DC-mediated cross-presentation. Nat Immunol 2014; 15: 213–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Janssens S, Pulendran B, Lambrecht BN . Emerging functions of the unfolded protein response in immunity. Nat Immunol 2014; 15: 910–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Katakam AK, Brightbill H, Franci C, Kung C, Nunez V, Jones C 3rd et al. Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proc Natl Acad Sci USA 2015; 112: 14664–14669.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol 2016; 17: 1167–1175.

    CAS  PubMed  Google Scholar 

  146. Spits H, Di Santo JP . The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 2011; 12: 21–27.

    CAS  PubMed  Google Scholar 

  147. Klose CS, Artis D . Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 2016; 17: 765–774.

    CAS  PubMed  Google Scholar 

  148. Artis D, Spits H . The biology of innate lymphoid cells. Nature 2015; 517: 293–301.

    CAS  PubMed  Google Scholar 

  149. Hernández PP, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol 2015; 16: 698–707.

    PubMed  PubMed Central  Google Scholar 

  150. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12: 1055–1062.

    PubMed  Google Scholar 

  151. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12: 1045–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wilhelm C, Harrison OJ, Schmitt V, Pelletier M, Spencer SP, Urban JF Jr et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J Exp Med 2016; 213: 1409–1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Antignano F, Braam M, Hughes MR, Chenery AL, Burrows K, Gold MJ et al. G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program. J Exp Med 2016; 213: 1153–1162.

    PubMed  PubMed Central  Google Scholar 

  154. Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat Immunol 2015; 16: 161–169.

    CAS  PubMed  Google Scholar 

  155. Koyasu S . Inflammatory ILC2 cells: disguising themselves as progenitors? Nat Immunol 2015; 16: 133–134.

    CAS  PubMed  Google Scholar 

  156. Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol 2016; 17: 646–655.

    CAS  PubMed  Google Scholar 

  157. Duerr CU, McCarthy CD, Mindt BC, Rubio M, Meli AP, Pothlichet J et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat Immunol 2016; 17: 65–75.

    CAS  PubMed  Google Scholar 

  158. Halim TY, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol 2016; 17: 57–64.

    CAS  PubMed  Google Scholar 

  159. Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013; 498: 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol 2014; 15: 354–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Victora GD . ILCs in the zone. Nat Immunol 2014; 15: 313–314.

    CAS  PubMed  Google Scholar 

  162. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 2015; 16: 306–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Diefenbach A . Profiling the diversity of innate lymphoid cells. Nat Immunol 2015; 16: 222–224.

    CAS  PubMed  Google Scholar 

  164. Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol 2015; 16: 1124–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 2015; 16: 599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Spits H . TOX sets the stage for innate lymphoid cells. Nat Immunol 2015; 16: 594–595.

    CAS  PubMed  Google Scholar 

  167. Yang Q, Li F, Harly C, Xing S, Ye L, Xia X et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 2015; 16: 1044–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kaye J ILC . development: TCF-1 reporting. in. Nat Immunol 2015; 16: 1011–1012.

    CAS  PubMed  Google Scholar 

  169. Sun C, Sun H, Zhang C, Tian Z . NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12: 292–302.

    CAS  PubMed  Google Scholar 

  170. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC . Single-cell technologies for monitoring immune systems. Nat Immunol 2014; 15: 128–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R et al. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 2015; 16: 933–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T, Gregoretti I et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol 2015; 16: 755–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kidd BA, Peters LA, Schadt EE, Dudley JT . Unifying immunology with informatics and multiscale biology. Nat Immunol 2014; 15: 118–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chandra S, Zhao M, Budelsky A, de Mingo Pulido A, Day J, Fu Z et al. A new mouse strain for the analysis of invariant NKT cell function. Nat Immunol 2015; 16: 799–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 2014; 512: 69–73.

    PubMed  Google Scholar 

  176. Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, Hemmi H et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 2015; 162: 1322–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Becher B, Schlitzer A, Chen J, Mair F, Sumatoh HR, Teng KW et al. High-dimensional analysis of the murine myeloid cell system. Nat Immunol 2014; 15: 1181–1189.

    CAS  PubMed  Google Scholar 

  178. Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B, Matsuda M et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 2015; 27: 574–588.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from National Natural Science Foundation of China (31400777, 31622024, 81671546) and “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13CG39).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Liu or Xuetao Cao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Cao, X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 13, 711–721 (2016). https://doi.org/10.1038/cmi.2016.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.58

Keywords

This article is cited by

Search

Quick links