Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

p38α has an important role in antigen cross-presentation by dendritic cells

Abstract

The role of the p38 signaling pathway in the innate and adaptive immune responses has been well documented, especially in inflammatory cytokine production by dendritic cells (DCs). However, whether the p38 signaling pathway affects the important antigen (Ag) presentation function of DCs remains largely unknown. In this study, we reported that the deletion of p38α resulted in an impaired cross-presentation ability of CD8+ conventional DCs (cDCs) and a reduction in the direct presentation ability of CD8 cDCs ex vivo. Further study revealed that p38α had a crucial role in Ag processing by CD8+ cDCs but did not affect the Ag uptake or co-stimulation of T cells. Moreover, p38α deficiency led to reduced cross-priming of T cells in vivo. The production of the IL-12p40 and IL-12p70 cytokines by p38α-deficient cDCs was also significantly reduced. Our study identified a new role for p38α in modulating the important antigen cross-presentation function of DCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wu L, Liu YJ . Development of dendritic-cell lineages. Immunity 2007; 26: 741–750.

    Article  CAS  PubMed  Google Scholar 

  2. Liu K, Nussenzweig MC . Origin and development of dendritic cells. Immunol Rev 2010; 234: 45–54.

    Article  CAS  PubMed  Google Scholar 

  3. Hochrein H, O'Keeffe M, Wagner H . Human and mouse plasmacytoid dendritic cells. Hum Immunol 2002; 63: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  4. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutierrez-Martinez E, Planes R, Anselmi G, Reynolds M, Menezes S, Adiko AC et al. Cross-Presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front Immunol 2015; 6: 363.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joffre OP, Segura E, Savina A, Amigorena S . Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12: 557–569.

    Article  CAS  PubMed  Google Scholar 

  7. Neefjes J, Jongsma ML, Paul P, Bakke O . Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11: 823–836.

    Article  CAS  PubMed  Google Scholar 

  8. Vyas JM, Van der Veen AG, Ploegh HL . The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8: 607–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM . The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004; 199: 1607–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pooley JL, Heath WR, Shortman K . Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 2001; 166: 5327–5330.

    Article  CAS  PubMed  Google Scholar 

  11. Sathe P, Pooley J, Vremec D, Mintern J, Jin JO, Wu L et al. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J Immunol 2011; 186: 5184–5192.

    Article  CAS  PubMed  Google Scholar 

  12. Shortman K, Heath WR . The CD8+ dendritic cell subset. Immunol Rev 2010; 234: 18–31.

    Article  CAS  PubMed  Google Scholar 

  13. Kurts C, Robinson BW, Knolle PA . Cross-priming in health and disease. Nat Rev Immunol 2010; 10: 403–414.

    Article  CAS  PubMed  Google Scholar 

  14. Rincon M, Davis RJ . Regulation of the immune response by stress-activated protein kinases. Immunol Rev 2009; 228: 212–224.

    Article  CAS  PubMed  Google Scholar 

  15. Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005; 15: 11–18.

    Article  CAS  PubMed  Google Scholar 

  16. Nakahara T, Uchi H, Urabe K, Chen Q, Furue M, Moroi Y . Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. Int Immunol 2004; 16: 1701–1709.

    Article  CAS  PubMed  Google Scholar 

  17. Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C . A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 2001; 166: 3837–3845.

    Article  CAS  PubMed  Google Scholar 

  18. Watts C, West MA, Zaru R . TLR signalling regulated antigen presentation in dendritic cells. Curr Opin Immunol 2010; 22: 124–130.

    Article  CAS  PubMed  Google Scholar 

  19. Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000; 6: 109–116.

    Article  CAS  PubMed  Google Scholar 

  20. Huang G, Wang Y, Vogel P, Kanneganti TD, Otsu K, Chi H . Signaling via the kinase p38alpha programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat Immunol 2012; 13: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu Y, Zhang M, Wang S, Hong B, Wang Z, Li H et al. p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nat Commun 2014; 5: 4229.

    Article  CAS  PubMed  Google Scholar 

  22. Huang G, Wang Y, Chi H . Control of T cell fates and immune tolerance by p38alpha signaling in mucosal CD103+ dendritic cells. J Immunol 2013; 191: 650–659.

    Article  CAS  PubMed  Google Scholar 

  23. Kang YJ, Chen J, Otsuka M, Mols J, Ren S, Wang Y et al. Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol 2008; 180: 5075–5082.

    Article  CAS  PubMed  Google Scholar 

  24. Barnden MJ, Allison J, Heath WR, Carbone FR . Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 1998; 76: 34–40.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao J, Zhou H, Wu N, Wu L . The non-canonical Wnt pathway negatively regulates dendritic cell differentiation by inhibiting the expansion of Flt3+ lymphocyte-primed multipotent precursors. e-pub ahead of print 8 June 2015 doi:10.1038/cmi.2015.39.

    Article  Google Scholar 

  26. Liu C, Zhang Y, Li J, Wang Y, Ren F, Zhou Y et al. p15RS/RPRD1A (p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A) interacts with HDAC2 in inhibition of the Wnt/beta-catenin signaling pathway. J Biol Chem 2015; 290: 9701–9713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ . IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96–105.

    Article  CAS  PubMed  Google Scholar 

  28. Bhardwaj N, Seder RA, Reddy A, Feldman MV . IL-12 in conjunction with dendritic cells enhances antiviral CD8+ CTL responses in vitro. J Clin Invest 1996; 98: 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bloom ET, Horvath JA . Cellular and molecular mechanisms of the IL-12-induced increase in allospecific murine cytolytic T cell activity. Implications for the age-related decline in CTL. J Immunol 1994; 152: 4242–4254.

    CAS  PubMed  Google Scholar 

  30. Yu Q, Kovacs C, Yue FY, Ostrowski MA . The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 2004; 172: 6047–6056.

    Article  CAS  PubMed  Google Scholar 

  31. Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 2003; 171: 4984–4989.

    Article  CAS  PubMed  Google Scholar 

  32. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 2004; 173: 307–313.

    Article  CAS  PubMed  Google Scholar 

  33. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995; 154: 5071–5079.

    CAS  PubMed  Google Scholar 

  34. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K . Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005; 202: 637–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang G, Wang Y, Chi H . Regulation of TH17 cell differentiation by innate immune signals. Cell Mol Immunol 2012; 9: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 2004; 305: 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  37. Schnorrer P, Behrens GM, Wilson NS, Pooley JL, Smith CM, El-Sukkari D et al. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci USA 2006; 103: 10729–10734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lahoud MH, Proietto AI, Gartlan KH, Kitsoulis S, Curtis J, Wettenhall J et al. Signal regulatory protein molecules are differentially expressed by CD8 dendritic cells. J Immunol 2006; 177: 372–382.

    Article  CAS  PubMed  Google Scholar 

  39. Shim EJ, Bang BR, Kang SG, Ma J, Otsuka M, Kang J et al. Activation of p38alpha in T cells regulates the intestinal host defense against attaching and effacing bacterial infections. J Immunol 2013; 191: 2764–2770.

    Article  CAS  PubMed  Google Scholar 

  40. Ritprajak P, Hayakawa M, Sano Y, Otsu K, Park JM . Cell type-specific targeting dissociates the therapeutic from the adverse effects of protein kinase inhibition in allergic skin disease. Proc Natl Acad Sci USA 2012; 109: 9089–9094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–965.

    Article  CAS  PubMed  Google Scholar 

  42. Heath WR, Carbone FR . Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64.

    Article  CAS  PubMed  Google Scholar 

  43. Kovacsovics-Bankowski M, Rock KL . A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995; 267: 243–246.

    Article  CAS  PubMed  Google Scholar 

  44. Ackerman AL, Kyritsis C, Tampe R, Cresswell P . Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci USA 2003; 100: 12889–12894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S . ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003; 425: 397–402.

    Article  CAS  PubMed  Google Scholar 

  46. Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 2003; 425: 402–406.

    Article  CAS  PubMed  Google Scholar 

  47. Shepherd JC, Schumacher TN, Ashton-Rickardt PG, Imaeda S, Ploegh HL, Janeway CA Jr et al. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 1993; 74: 577–584.

    Article  CAS  PubMed  Google Scholar 

  48. Norbury CC, Chambers BJ, Prescott AR, Ljunggren HG, Watts C . Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur J Immunol 1997; 27: 280–288.

    Article  CAS  PubMed  Google Scholar 

  49. Van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S . TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 1992; 71: 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  50. Rybicka JM, Balce DR, Chaudhuri S, Allan ER, Yates RM . Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 2012; 31: 932–944.

    Article  CAS  PubMed  Google Scholar 

  51. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 2006; 126: 205–218.

    Article  CAS  PubMed  Google Scholar 

  52. Savina A, Peres A, Cebrian I, Carmo N, Moita C, Hacohen N et al. The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8(+) dendritic cells. Immunity 2009; 30: 544–555.

    Article  CAS  PubMed  Google Scholar 

  53. Lam GY, Huang J, Brumell JH . The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 2010; 32: 415–430.

    Article  CAS  PubMed  Google Scholar 

  54. Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J, Hermine O et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 2008; 112: 4712–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bao W, Behm DJ, Nerurkar SS, Ao Z, Bentley R, Mirabile RC et al. Effects of p38 MAPK inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. J Cardiovasc Pharmacol 2007; 49: 362–368.

    Article  CAS  PubMed  Google Scholar 

  56. Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ et al. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 284: L26–L38.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamori T, Inanami O, Nagahata H, Cui Y, Kuwabara M . Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett 2000; 467: 253–258.

    Article  CAS  PubMed  Google Scholar 

  58. Schenten V, Melchior C, Steinckwich N, Tschirhart EJ, Brechard S . Sphingosine kinases regulate NOX2 activity via p38 MAPK-dependent translocation of S100A8/A9. J Leukoc Biol 2011; 89: 587–596.

    Article  CAS  PubMed  Google Scholar 

  59. Bureau C, Bernad J, Chaouche N, Orfila C, Beraud M, Gonindard C et al. Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 2001; 276: 23077–23083.

    Article  CAS  PubMed  Google Scholar 

  60. Shortman K, Naik SH . Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007; 7: 19–30.

    Article  CAS  PubMed  Google Scholar 

  61. Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M et al. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 2005; 174: 6592–6597.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Chinese Ministry of Science and Technology National Major Scientific Research Program (2015CB943200), the Key Project Grant from the National Natural Science Foundation of China (31330027), the National Basic Research Program of China (2015CB553800) and the Tsinghua Science Foundation (20111080963).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahuai Han or Li Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wu, J., Liu, C. et al. p38α has an important role in antigen cross-presentation by dendritic cells. Cell Mol Immunol 15, 246–259 (2018). https://doi.org/10.1038/cmi.2016.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.49

Keywords

This article is cited by

Search

Quick links