Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Toxoplasma gondii GRA15II effector-induced M1 cells ameliorate liver fibrosis in mice infected with Schistosomiasis japonica

Abstract

Recent studies indicated that type II Toxoplasma gondii (Tg) GRA15II favored the generation of classically activated macrophages (M1), whereas type I/III TgROP16I/III promoted the polarization of alternatively activated macrophages (M2). A number of studies have demonstrated that M2 cells are involved in the pathogenesis of the liver fibrogenesis caused by Schistosoma japonicum. The purpose of the present study was to explore the inhibitory effect of Toxoplasma-derived TgGRA15II on mouse hepatic fibrosis with schistosomiasis. The gra15II and rop16I/III genes were amplified from strains T. gondii PRU and Chinese 1 Wh3, respectively. Lentiviral vectors containing the gra15II or rop16I/III plasmid were constructed and used to infect the RAW264.7 cell line. The polarization of the transfected cells was evaluated, followed by co-culture of the biased macrophages with mouse hepatic stellate JS1 cells. Then, mice were injected with GRA15II-driven macrophages via the tail vein and infected with S. japonicum cercariae. TgGRA15II induced a M1-biased response, whereas TgROP16I/III drove the macrophages to a M2-like phenotype. The in vitro experiments indicated that JS1 cell proliferation and collagen synthesis were decreased following co-culture with TgGRA15II-activated macrophages. Furthermore, mice inoculated with TgGRA15II-biased macrophages displayed a notable alleviation of collagen deposition and granuloma formation in their liver tissues. Our results suggest that TgGRA15II-induced M1 cells may dampen the M2 dominant pathogenesis of hepatic fibrosis and granulomatosis. These results provide insights into the use of parasite-derived immunomodulators as potential anti-fibrosis agents and to re-balance the schistosomiasis-induced immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA . Immunopathology of schistosomiasis. Immunol Cell Biol 2007; 85: 148–154.

    Article  CAS  Google Scholar 

  2. Bergquist R, Utzinger J, McManus DP . Trick or treat: the role of vaccines in integrated schistosomiasis control. PLoS Negl Trop Dis 2008; 2: e244.

    Article  Google Scholar 

  3. McManus DP, Loukas A . Current status of vaccines for schistosomiasis. Clin Microbiol Rev 2008; 21: 225–242.

    Article  CAS  Google Scholar 

  4. Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, McManus DP . Immunopathogenesis of human schistosomiasis. Parasite Immunol 2009; 31: 163–176.

    Article  CAS  Google Scholar 

  5. Everts B, Hussaarts L, Driessen NN, Meevissen MH, Schramm G, van der Ham AJ et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J Exp Med 2012; 209: 1753–1767; S1751.

    Article  CAS  Google Scholar 

  6. Barron L, Wynn TA . Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur J Immunol 2011; 41: 2509–2514.

    Article  CAS  Google Scholar 

  7. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115: 56–65.

    Article  CAS  Google Scholar 

  8. Wynn TA, Barron L . Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30: 245–257.

    Article  CAS  Google Scholar 

  9. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  Google Scholar 

  10. Martinez FO, Helming L, Gordon S . Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451–483.

    Article  CAS  Google Scholar 

  11. Horsnell WG, Brombacher F . Genes associated with alternatively activated macrophages discretely regulate helminth infection and pathogenesis in experimental mouse models. Immunobiology 2010; 215: 704–708.

    Article  CAS  Google Scholar 

  12. Gordon S . Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  Google Scholar 

  13. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41: 14–20.

    Article  CAS  Google Scholar 

  14. Dewals BG, Marillier RG, Hoving JC, Leeto M, Schwegmann A, Brombacher F . IL-4Ralpha-independent expression of mannose receptor and Ym1 by macrophages depends on their IL-10 responsiveness. PLoS Negl Trop Dis 2010; 4: e689.

    Article  Google Scholar 

  15. Stolfi C, Caruso R, Franze E, Sarra M, De Nitto D, Rizzo A et al. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology 2011; 132: 66–77.

    Article  CAS  Google Scholar 

  16. Bronte V, Zanovello P . Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.

    Article  CAS  Google Scholar 

  17. Morris SM Jr . Arginine: beyond protein. Am J Clin Nutr 2006; 83: 508S–512S.

    Article  CAS  Google Scholar 

  18. Pearce EJ, MacDonald AS . The immunobiology of schistosomiasis. Nat Rev Immunol 2002; 2: 499–511.

    Article  CAS  Google Scholar 

  19. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM . Immunopathogenesis of schistosomiasis. Immunol Rev 2004; 201: 156–167.

    Article  CAS  Google Scholar 

  20. Ahmed SF, Oswald IP, Caspar P, Hieny S, Keefer L, Sher A et al. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect Immun 1997; 65: 219–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 2001; 167: 6533–6544.

    Article  CAS  Google Scholar 

  22. Allen JE, Wynn TA . Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 2011; 7: e1002003.

    Article  CAS  Google Scholar 

  23. Montoya JG, Liesenfeld O . Toxoplasmosis. Lancet 2004; 363: 1965–1976.

    Article  CAS  Google Scholar 

  24. Dubey JP . The history of Toxoplasma gondii—the first 100 years. J Eukaryot Microbiol 2008; 55: 467–475.

    Article  Google Scholar 

  25. Carme B, Demar M, Ajzenberg D, Darde ML . Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana. Emerg Infect Dis 2009; 15: 656–658.

    Article  Google Scholar 

  26. Wendte JM, Miller MA, Lambourn DM, Magargal SL, Jessup DA, Grigg ME . Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii. PLoS Genet 2010; 6: e1001261.

    Article  CAS  Google Scholar 

  27. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 2006; 314: 1780–1783.

    Article  CAS  Google Scholar 

  28. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 2006; 314: 1776–1780.

    Article  CAS  Google Scholar 

  29. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC . Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007; 445: 324–327.

    Article  CAS  Google Scholar 

  30. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP . Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci USA 2011; 108: 9625–9630.

    Article  CAS  Google Scholar 

  31. Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KD et al. Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med 2011; 208: 195–212.

    Article  CAS  Google Scholar 

  32. Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog 2011; 7: e1002236.

    Article  CAS  Google Scholar 

  33. Jensen KD, Wang Y, Wojno ED, Shastri AJ, Hu K, Cornel L et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 2011; 9: 472–483.

    Article  CAS  Google Scholar 

  34. Cheng W, Liu F, Li M, Hu X, Chen H, Pappoe F et al. Variation detection based on next-generation sequencing of type Chinese 1 strains of Toxoplasma gondii with different virulence from China. BMC Genomics 2015; 16: 888.

    Article  Google Scholar 

  35. Cai Y, Chen H, Mo X, Tang Y, Xu X, Zhang A et al. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages. Cell Signal 2014; 26: 1204–1212.

    Article  CAS  Google Scholar 

  36. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  37. Ding AH, Nathan CF, Stuehr DJ . Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 1988; 141: 2407–2412.

    CAS  PubMed  Google Scholar 

  38. Mantovani A, Locati M . Orchestration of macrophage polarization. Blood 2009; 114: 3135–3136.

    Article  CAS  Google Scholar 

  39. Garcia L, Hernandez I, Sandoval A, Salazar A, Garcia J, Vera J et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37: 797–805.

    Article  CAS  Google Scholar 

  40. Chu D, Du M, Hu X, Wu Q, Shen J . Paeoniflorin attenuates schistosomiasis japonica-associated liver fibrosis through inhibiting alternative activation of macrophages. Parasitology 2011; 138: 1259–1271.

    Article  CAS  Google Scholar 

  41. Gryseels B, Polman K, Clerinx J, Kestens L . Human schistosomiasis. Lancet 2006; 368: 1106–1118.

    Article  Google Scholar 

  42. Wynn TA, Cheever AW . Cytokine regulation of granuloma formation in schistosomiasis. Curr Opin Immunol 1995; 7: 505–511.

    Article  CAS  Google Scholar 

  43. Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun 2006; 74: 1471–1479.

    Article  CAS  Google Scholar 

  44. Friedman SL . Liver fibrosis—from bench to bedside. J Hepatol 2003; 38 (Suppl 1): S38–S53.

    Article  Google Scholar 

  45. Anthony B, Allen JT, Li YS, McManus DP . Hepatic stellate cells and parasite-induced liver fibrosis. Parasit Vectors 2010; 3: 60.

    Article  Google Scholar 

  46. Chang J, Hisamatsu T, Shimamura K, Yoneno K, Adachi M, Naruse H et al. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol Res 2013; 43: 658–669.

    Article  Google Scholar 

  47. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011; 12: 231–238.

    Article  CAS  Google Scholar 

  48. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    Article  CAS  Google Scholar 

  49. Mantovani A . From phagocyte diversity and activation to probiotics: back to Metchnikoff. Eur J Immunol 2008; 38: 3269–3273.

    Article  CAS  Google Scholar 

  50. Hoffmann KF, James SL, Cheever AW, Wynn TA . Studies with double cytokine-deficient mice reveal that highly polarized Th1- and Th2-type cytokine and antibody responses contribute equally to vaccine-induced immunity to Schistosoma mansoni. J Immunol 1999; 163: 927–938.

    CAS  PubMed  Google Scholar 

  51. Kaplan MH, Whitfield JR, Boros DL, Grusby MJ . Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol 1998; 160: 1850–1856.

    CAS  PubMed  Google Scholar 

  52. Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN . Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 2000; 164: 2585–2591.

    Article  CAS  Google Scholar 

  53. Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A, Radwanska M et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 2004; 20: 623–635.

    Article  CAS  Google Scholar 

  54. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178: 5288–5295.

    Article  CAS  Google Scholar 

  55. Murray PJ . Macrophages as a battleground for toxoplasma pathogenesis. Cell Host Microbe 2011; 9: 445–447.

    Article  CAS  Google Scholar 

  56. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  Google Scholar 

  57. Zhu J, Xu Z, Chen X, Zhou S, Zhang W, Chi Y et al. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice. Parasit Vectors 2014; 7: 122.

    Article  Google Scholar 

  58. Barron L, Wynn TA . Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol 2011; 300: G723–G728.

    Article  CAS  Google Scholar 

  59. Robben PM, Mordue DG, Truscott SM, Takeda K, Akira S, Sibley LD . Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J Immunol 2004; 172: 3686–3694.

    Article  CAS  Google Scholar 

  60. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS . Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 2000; 204: 19–28.

    Article  CAS  Google Scholar 

  61. Elsharkawy AM, Oakley F, Mann DA . The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005; 10: 927–939.

    Article  CAS  Google Scholar 

  62. Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 2007; 45: 213–222.

    Article  CAS  Google Scholar 

  63. Bogdan C . Nitric oxide and the immune response. Nat Immunol 2001; 2: 907–916.

    Article  CAS  Google Scholar 

  64. Noel W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P, Beschin A . Alternatively activated macrophages during parasite infections. Trends Parasitol 2004; 20: 126–133.

    Article  CAS  Google Scholar 

  65. Hesse M, Cheever AW, Jankovic D, Wynn TA . NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease. Am J Pathol 2000; 157: 945–955.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jinsheng Guo at Shanghai Zhongshan Hospital for providing the murine hepatic stellate cell line JS1. The work was funded by the National Science Foundation of China (No. 81471983 and No. 81171606), the National Basic Research Program of China (No. 2010CB530001) and the Science Foundation of Anhui Province (No. KJ2014A106 and No. 1308085MH124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jilong Shen or Deyong Chu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Wen, H., Yan, K. et al. Toxoplasma gondii GRA15II effector-induced M1 cells ameliorate liver fibrosis in mice infected with Schistosomiasis japonica. Cell Mol Immunol 15, 120–134 (2018). https://doi.org/10.1038/cmi.2016.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.21

Keywords

This article is cited by

Search

Quick links