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Aberrant coagulation causes a hyper-inflammatory
response in severe influenza pneumonia

Yan Yang1 and Hong Tang1,2

Influenza A virus (IAV) infects the respiratory tract in humans and causes significant morbidity and mortality
worldwide each year. Aggressive inflammation, known as a cytokine storm, is thought to cause most of the damage
in the lungs during IAV infection. Dysfunctional coagulation is a common complication in pathogenic influenza,
manifested by lung endothelial activation, vascular leak, disseminated intravascular coagulation and pulmonary
microembolism. Importantly, emerging evidence shows that an uncontrolled coagulation system, including both the
cellular (endothelial cells and platelets) and protein (coagulation factors, anticoagulants and fibrinolysis proteases)
components, contributes to the pathogenesis of influenza by augmenting viral replication and immune
pathogenesis. In this review, we focus on the underlying mechanisms of the dysfunctional coagulatory response in
the pathogenesis of IAV.
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Influenza A virus (IAV) is a genus of the family Orthomyx-
oviridae that contains a negative-sense, single-stranded, seg-
mented RNA genome and is categorized into subtypes based on
the expression of hemagglutinin (HA; H1–H18) and neurami-
nidase (NA; N1–N11) on the surface of the viral envelope.1

Seasonal flu, which is caused by different subtypes of IAV,
usually leads to the death of half a million people each year.
Pandemic flu is caused by the genetic reassortment and
transmission of IAV in the chain of wild birds/poultry/pigs
and has become one of the most imminent dangers to human
beings.2 Because of the lack of immune memory, these
zoonotic viruses often cause high morbidity and mortality in
infected people; for example, the notorious 1918 H1N1
pandemic killed up to 50 million people globally and the
2009 H1N1 pandemic had a death toll of up to 284 500
people.3,4

Severe IAV, involving either seasonal or pandemic influenza
virus, infects the upper respiratory tracts and induces acute
respiratory distress syndrome (ARDS).5 Clinically, the char-
acteristic alveolar changes of influenza virus pneumonia
include capillary thrombosis, focal necrosis and hyperemia of
the alveolar wall, inflammatory infiltration, the formation of
hyaline membranes and pulmonary edema.6 Small vessel

thrombosis, hemorrhage and diffuse alveolar damage are
observed in severe influenza pneumonia, indicating disordered
coagulation.6,7 Severe IAV also causes multiple organ dysfunc-
tion syndrome and disseminated intravascular coagulation
(DIC).5,8,9

IAV primarily targets the airway and alveolar epithelial cells
by binding to sialic acid residues through HA. The internalized
viral RNA in the cytosol activates pattern recognition receptors,
including Toll-like receptors (TLRs; primarily TLR3 and TLR7)
and retinoic acid inducible gene-1 (RIG-I) to initiate the innate
immune responses. Recognition of viral RNA by RIG-I and
TLRs activates IRF3/7 to induce robust type I and III interferon
(IFN-α/β and -λ) responses, which induce the transcription
and release of hundreds of interferon-stimulated genes (ISGs)
and trigger the activation of nuclear factor kappa B (NF-κB) to
induce the production of pro-inflammatory cytokines and
chemokines (for example, interleukin (IL)-6, TNF-α, MCP-1,
MIP-1α/β and RANTES).10,11 In addition, the viral RNA and
proteins can also activate inflammasomes, resulting in the
release of IL-1β and IL-18.12–14 IFNs and pro-inflammatory
cytokines and chemokines are important for viral clearance and
also induce the recruitment and activation of circulating
neutrophils, monocytes and lymphocytes (natural killer (NK)
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cells, natural killer T cells and T cells) into the site of
infection.15 In addition to further activating the innate immune
response and priming the adaptive immune response to
eradicate the virus, innate immune cells are often overactivated
in IAV-induced ARDS and contribute to its high morbidity and
mortality.16 The overproduction of pro-inflammatory cyto-
kines and the overactivation of immune cells during IAV
infection is known as a cytokine storm.17 Although the general
concept of a cytokine storm is well known (reviewed in ref. 17),
the precise constitution and molecular mechanisms of the IAV-
associated hyper-inflammatory response in ARDS is largely
unclear.

Emerging lines of evidence indicate that an aggressive
immune response in severe influenza is augmented by dysfunc-
tional coagulation, which is manifested by lung endothelial
activation, vascular leak, disseminated intravascular coagulation
and pulmonary microembolism.18–20 This review summarizes

recent advances in understanding the hyper-inflammatory
response that is caused by aberrant coagulation in IAV
infection.

OVERVIEW OF THE COAGULATION SYSTEM

Coagulation is the formation of a blood clot. Coagulation is a
highly ordered process that involves three components
(endothelial cells, platelets and coagulation factors) in a
sequential action of primary hemostasis, secondary hemostasis
and fibrinolysis.21 Typically, coagulation is initiated by an
injury to the vascular endothelial cells (ECs) (Figure 1b).
Primary hemostasis is characterized by platelets that bind to
injured and/or activated ECs and the immediate formation of a
platelet plug (Figure 1c). Secondary coagulation has two
separate initial pathways, the contact activation pathway
(intrinsic pathway) and the tissue factor (TF) pathway (extrin-
sic pathway) (Figures 1d and e). Both pathways result in the

Figure 1 Cascades of the coagulation system. (a) Resting ECs provide natural anticoagulants (TM, AT and TFPI and ADPase) to inhibit
coagulation and keep platelet activation and the coagulation cascade in check. (b) Coagulation is typically initiated by an injury to the
vascular ECs, which results in the exposure of TF and collagen from the sub-endothelial tissue to the blood and the release of vWF.
(c) Platelets are activated when they are exposed to TF, collagen and vWF. Activated platelets release a number of mediators, such as ADP
and vWF stores within their granules, leading to further platelet recruitment, activation, aggregation and plug formation, which is a process
termed primary hemostasis. (d) The interaction between TF and factor VII initiates the extrinsic pathway. (e) The exposure of collagen to
blood starts the intrinsic pathway. (f) Both the extrinsic and intrinsic pathways result in the initiation of a common pathway, which
contains the cascades involved in the production of activated Factor X and thrombin and the formation of fibrin strands. (g) Fibrin strands
strengthen the platelet plug and lead to the formation of a stable platelet–fibrin clot. This process is termed secondary hemostasis.
(h) Kallikrein, uPA or tPA activate plasminogen to plasmin, which then degrades and reabsorbs the polymerized fibrin strands. It is the
eventual process of fibrinolysis that heals wounds. AT, antithrombin; ECs, endothelial cells; TF, tissue factor; TFPI, tissue factor pathway
inhibitors; TM, thrombomodulin; tPA, tissue plasminogen activator; uPA, urokinase plasminogen activator; vWF, von Willebrand factor.
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production of factor X, which induces thrombin and the
formation of fibrin strands to strengthen the platelet plug and
form a stable platelet–fibrin clot (Figures 1f and g). The
coagulation process is tightly controlled by anticoagulants,
which can limit the clot to avoid thrombus propagation, and
fibrinolysis, which is responsible for the degradation of the
platelet–fibrin clot as the wound heals (Figures 1a and h).

COAGULATION DISORDER IS ASSOCIATED WITH

INFLUENZA INFECTION

Thrombosis, which often leads to hemorrhage, is a common
clinical complication of severe influenza. Patients with a severe
IAV infection, such as an H7N9 viral infection,6,22 often show
typical alterations of coagulation, including hyperemia of the
alveolar wall, pulmonary capillary and small vessel thrombosis,
fibrin deposition and DIC, and hemorrhage. The coagulation
abnormalities (coagulopathy) are characterized by a prolonged
activated partial thromboplastin time, prothrombin time and
thrombin time, and decreased platelet counts in the blood in
patients infected with H7N923–25 or highly pathogenic
H5N1.26,27 Both thrombotic and hemorrhagic complications
were reported in the 2009 H1N1 influenza (‘swine flu’), such as
microscopic thrombi, thromboemboli, pulmonary arterial
thrombi and pulmonary hemorrhage with hemoptysis, hema-
temesis and petechial rash.28–31 Thus, an influenza virus
infection results in disorders, including both overactivated
coagulation that leads to uncontrolled thrombosis and coagu-
lopathy that leads to pulmonary hemorrhage and edema.

The overactivation of coagulation by influenza exacerbates
the risk of pulmonary and cardiac diseases.32–37 IAV infections
also cause a transient increased risk of deep venous thrombosis
and pulmonary embolism,32 acute coronary syndromes,37 acute
cardiac injury,38 acute myocardial infarction (AMI)39,40 and
other cardiovascular diseases.41,42 For example, H1N1 infection
elevates the expression of genes that promote hemostasis
and/or platelet aggregation and the signature platelet genes
associated with AMI.43 Such acute thrombosis in an already-
diseased coronary artery can cause a subcritical level of stenosis
attributable to the development of acute coronary syndromes.37

Therefore, reducing the risk of infection by vaccination against
influenza effectively reduces the risk of stroke hospitalization,44

AMI rates39 and other cardiovascular events,45 with beneficial
cardiovascular outcomes41 and increased survival among
patients with acute heart failure.46 Clinical trials using oselta-
mivir (Tamiflu) have shown that a reduction in viral load is
associated with a decrease in the incidence of cardiac
disorders.47

Animal studies have partly explained the mechanism of
activated coagulation by IAV infection.48,49 IAV activates
coagulation by increasing thrombin generation, fibrin deposi-
tion and fibrinolysis in C57BL/6 mice.48 D-dimer (a circulating
marker for enhanced coagulation and fibrinolysis) concentra-
tions and von Willebrand factor (vWF) activity are both
increased in ferrets after infection with seasonal, pandemic or
highly pathogenic avian influenza (HPAI)-H5N1 viruses.49 The
activation marker of coagulation thrombin–antithrombin

complex is increased in both pandemic and HPAI-H5N1
virus-infected ferrets, while intra-capillary fibrin deposition is
especially evident in HPAI-H5N1 infection.49

More importantly, such a pro-thrombotic state induced by
influenza virus infection will inevitably downregulate the
anticoagulant components and inhibit fibrinolysis.33,50–52

In turn, abnormal coagulation promotes hemorrhage and
thrombosis, which is often associated with the overzealous
inflammation observed during a severe IAV infection.20,33,53

THE ABERRANT ACTIVATION OF ECS IS RESPONSIBLE

FOR BOTH ABNORMAL COAGULATION AND HYPER-

INFLAMMATION IN INFLUENZA

Resting ECs provide a non-thrombogenic barrier that prevents
the inappropriate activation of coagulation by producing
numerous anticoagulant components and inhibiting platelet
activation54 (Figure 1a). Once activated or injured, ECs initiate
coagulation by activating platelets and the expression of
coagulation components, as well as by down-regulating
physiological anticoagulant components and suppressing fibri-
nolytic activity55 (Figure 1b). At the same time, the activation
of ECs can result in an increase in local blood circulation,
localized plasma leakage and the recruitment and activation of
leukocytes to promote inflammation.56,57 IAV can directly and/
or indirectly induce EC activation and vascular hyperperme-
ability (Figure 2a). Certain IAV subtypes, such as H3N2 and
H5N1, may infect lung endothelial cells, which also express α2,
6-linked sialic acid and are adjacent to the primary target cells
of the respiratory epithelia. Recognition of damage-associated
molecular patterns, such as HMGB1 or oxidized phospholipids
via TLR4, also activates ECs to drive lung injury.53,58,59 Direct
stimulation of TLR3 by viral RNA results in the upregulation of
TF and the downregulation of thrombomodulin in endothelial
cells.60 Human IAV has been reported to induce pulmonary
microvascular leakage through the degradation of the tight
junction protein claudin-5.61 In vivo, D-dimer and tissue fibrin
deposition are elevated.60

Inflammatory cytokines, produced by leukocytes, the lung
epithelium and pulmonary endothelium, mainly contribute to
endothelium dysfunction. Elevated TNF-α levels have been
shown to induce EC apoptosis. TNF-α, IL-1β and IL-6 can
upregulate trypsin in ECs, which results in the loss of zonula
occludens-1 (ZO-1; a tight junction protein) and vascular
hyperpermeability via protease-activated receptor-2 (PAR-2).62

Hypoxia, which is found in flu patients, contributes to EC
activation to induce the release of pro-inflammatory IL-1, IL-6,
platelet-activating factor (PAF), intercellular adhesion molecule
1 (ICAM-1), P-selectin and vWF.63 Thus, an IAV infection can
induce pulmonary hemorrhage and alveolar edema through the
activation and damage of ECs via several mechanisms, includ-
ing direct damage, loss of tight junctions and hyperpermeability
induced by inflammatory factors and the apoptosis of
endothelial cells.

At the same time, the activation of and damage to ECs leads
to the activation of the pro-coagulatory cascade. The expression
of TF and vWF by activated ECs, the exposure of collagen to
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blood as a result of disruption of the endothelial barrier, and
increased platelet binding to ECs induces platelet activation and
aggregation, which then activates the extrinsic coagulation
cascade (Figure 2b).21 EC activation reduces the expression
or secretion of components of anticoagulation and fibrinolysis,
and facilitates microthrombosis in the lung.18 Impaired coa-
gulation then leads to DIC and triggers decompensated
thrombocytopenia, which is induced by overactivation and
excessive aggregation and passive exhaustion of platelets (dis-
cussed below). Pulmonary thrombosis results in passive con-
gestion, limiting compensatory ventilation responses and then
exacerbates vascular leakage and alveolar edema, contributing
to widespread hemorrhaging, severe hypoxia, multiple organ
failure and death during severe IAV infection (Figure 2d).64–66

Pulmonary ECs subsequently play a crucial role in the
initiation and amplification of the cytokine storm during an
IAV infection. By activating sphingosine-1-phosphate-1 (S1P1)
signaling in the pulmonary endothelium, S1P1 receptor ago-
nists (CYM-5442 and RP-002) inhibit the cytokine storms and
protect the host from pathogenic influenza virus challenge.53

Moreover, IL-1R signaling and MyD88/TRIF signaling are
necessary for the early amplification of the cytokine storm,
and S1P1 receptor agonist treatment blunts the cytokine storm
mainly by inhibiting the MyD88 signaling pathway.67 Innate
cytokine and chemokine production and innate immune cell
infiltration are separable events, with the pulmonary endothe-
lium at the center of both processes.53 The innate immune cell
infiltration is regulated by ECs, which express adhesion

Figure 2 Interactions between coagulation and inflammation during IAV infection. (a) Airway and alveolar epithelial cells are the primary
targets of IAV infection. IAV can directly infect ECs and/or indirectly induce EC activation and vascular hyperpermeability through PAMPs,
DAMPs and inflammatory cytokines. (b) The activation of ECs induces a pro-thrombotic state by down-regulating the anticoagulant
components (TM, AT, TFPI and ADPase), the expression of TF and vWF and the exposure of collagen to blood. Thrombin, FXa and FVIIa,
produced by the coagulation cascade, augment the inflammatory response by activating platelets, endothelial cells, monocytes, neutrophils,
NKT and T cells through PARs. (c) Platelets are activated by exposure to thrombin, TF, collagen and vWF. Then, the coagulation cascades
and thrombi formation are initiated. (d) The downregulation of tight junction protein on ECs and apoptosis of ECs induced by inflammatory
cytokines lead to vascular hyperpermeability, which results in leakage of plasma and blood cells into the bronchoalveoli (hemorrhage).
Decompensated thrombocytopenia is another reason for hemorrhage during an IAV infection. (e) Activated platelets act as pro-inflammatory
cells by releasing inflammatory cytokines and promoting the activation, transmigration and cytokine release of neutrophils, T, B and NK
cells, DC and monocytes. Activated platelets also modulate EC function to promote an inflammatory response. (f) The cytokine storm of
overactivated neutrophils, monocytes and lymphocytes (NK cell, NKT cell and T cell), as well as the overproduction of inflammatory
cytokines by these cells, contributes to the high morbidity and mortality during IAV infection. AT, antithrombin; DAMPs, damage-associated
molecular patterns; DC, dendritic cell; EC, endothelial cell; IAV, influenza A virus; NK, natural killer; NKT, natural killer T cells; PAMPs,
pathogen-associated molecular patterns; PAR, protease-activated receptor; TF, tissue factor; TFPI, tissue factor pathway inhibitor; TM,
thrombomodulin; vWF, von Willebrand factor.
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molecules (P-selectin, E-selectin, ICAM-1 and VCAM-1) and
facilitate the binding and migration of leukocytes during an
influenza virus infection (Figure 2e).68,69 An activated EC–
platelet–leukocyte interaction feeds forward to amplify the
overall inflammatory response (Figure 2e).18 Thus, pulmonary
ECs might be a potential therapeutic target because of their
critical role in the amplification of the cytokine storm.

MASSIVE INFILTRATION AND THE ACTIVATION OF

PLATELETS CONTRIBUTES TO THE PATHOGENESIS

OF INFLUENZA IN THE LUNGS

The primary function of platelets is to sense the injured vessel
endothelia and initiate blood clotting for hemostasis.70 Recent
studies show that, in addition to their important roles in
damage repair, platelets are also an integral part of the innate
immune system as pro-inflammatory cells.71–73 After the
activation of and damage to ECs, platelets are activated by
numerous factors, including collagen, thromboxane A2, vWF,
thrombin, ADP and pro-inflammatory cytokines or PAF
(Figure 1c).52 Influenza virus H1N1 also activates platelets
through FcγRIIA on platelets by the IgG–virus immune
complex.52

Moreover, activated platelets release a number of mediators
and cytokines from stores within their α- and dense-granules
for further platelet recruitment, activation and aggregation
(Figure 1c). Platelets are major pro-inflammatory cells under
inflammatory conditions.71,74–77 Upon activation, platelets
change from smooth discs to spiny spheres and rapidly release
inflammatory and coagulatory mediators stored in their
granules and express a number of receptors for adhesion and
clotting molecules.77 The interaction of P-selectin on activated
platelets and P-selectin glycoprotein ligand expressed on
neutrophils leads to the activation of neutrophils in the
circulation and the redistribution of Mac-1 and CXCR2, which
guide neutrophil intravascular crawling and transmigration and
the initiation of inflammation (Figure 2e).69 Such platelet–
neutrophil aggregates contribute to a variety of inflammatory
settings, including acute lung injury, acute hepatic injury, sepsis
and atherosclerosis.78–80 Platelet–neutrophil aggregation is also
responsible for the generation of reactive oxygen species (ROS)
by neutrophils, modulating the phagocytic capacity of neutro-
phils and the formation of neutrophil extracellular traps (webs
of extracellular DNA and histones).79,80 Activated platelets also
interact with T cells, B cells, NK cells, dendritic cells (DCs) and
monocytes and induce their homing, activation and recruit-
ment, and cytokine release (Figure 2e).81 More importantly, the
cytokines and chemokines released from the activated platelets,
including CD40L, IL-1β, CCL5, CXCL4, CXCL7 and TGF-β,
are profoundly involved in the modulation of endothelial cell
function, leukocyte trafficking and immune response
(Figure 2c).81 For example, CD40L, released from activated
platelets, can activate CD40 on endothelial cells to upregulate
ICAM-1, VCAM-1, E-selectin and P-selectin and to release
IL-6, MCP-1, CCL2 and TF, thereby promoting leukocyte
recruitment to lesions and immune activation.82–84

Massive infiltration of activated and aggregated platelets in
the lungs may be associated with thrombocytopenia, which is
often observed in highly pathogenic influenza virus infections
but is rare for other human viruses, such as adenovirus,
metapneumovirus, coronavirus or bocavirus infections.85

Thrombocytopenia has been observed in 73% of patients
infected by avian origin H7N9 and is a risk factor for acute
respiratory failure in H1N1 influenza.86–88 The overactivation
of platelets by influenza viruses causes thrombosis in the lung,
which can passively exhaust platelets, and lead to
thrombocytopenia.20

Therefore, blockade of platelet overactivation and aggrega-
tion can reduce the severity of acute respiratory syndrome.20

For example, the administration of the PAR-1 antagonist
SCH79797, which inhibits the activation of platelets induced
by thrombin, decreases inflammation and improves survival
after IAV infection in mice.89 A deficiency in the major platelet
receptor glycoprotein IIIa (GPIIIa) or treatment with anti-
platelet compounds (eptifibatide, MRS 2179, clopidogrel,
acetylsalicylic acid/aspirin and ticlopidine) protects mice from
lethal influenza virus infection.20,90 Aspirin also acts as an anti-
influenza virus agent in vitro by inhibiting pro-inflammatory
NF-κB activity and improving the influenza outcome in vivo.91

However, whether aspirin inhibits platelet activation in vivo is
controversial because it may have increased the mortality of the
1918–1919 pandemic influenza92 and influenza virus infection
in animal models.93 Larger scale clinical studies are needed to
exclude strain variation in influenza viruses, various antipyretic
regimes and models of meta-analysis.94,95 For example, treat-
ment with aspirin and dicrofenac sodium aggravates the
hematogenous spread of IAV to the central nervous system
in chicken but does not affect transneural infection in mice.96

Interestingly, aspirin does not significantly increase mortality in
an influenza B virus mouse model of Reye’s syndrome.97

Aspirin and acetaminophen have the potential to exacerbate
the consequences of influenza B virus infection in neonatal
mice but not in weanling mice.98 Therefore, anti-platelet
compounds should be explored as a potential treatment for
influenza, but more studies are needed, and the data must be
carefully interpreted.

COAGULATION FACTORS AUGMENT THE

INFLAMMATORY RESPONSE TO AN IAV INFECTION

The plasma coagulation cascade is primarily initiated by TF
during an influenza infection.19 Under physiological condi-
tions, TF is present in the sub-endothelial tissue, fibroblasts
and circulatory blood cells or ECs do not express TF
(Figure 1a). Inflammation caused by IAV infection causes
disruption of the vessel walls that exposes TF to the
circulation.33,65 ECs and monocytes begin producing TF in
response to various pro-inflammatory cytokines (such as
TNF-α, IL-1, IL-6, IL-8 and MCP-1) and pathogen-
associated molecular pattern (such as viral RNA).60,99 The
coagulation cascade is initiated quickly once TF has been
exposed to the blood (Figure 1d). The activated coagulation
cascade generates thrombin protease (factor IIa), which
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converts fibrinogen into fibrin (Figure 1f). Thrombin is
involved in the feedback activation of coagulation by activating
coagulation factors V, VIII, XI and XIII (Figures 1e and f). As
one of the strongest platelet activators, thrombin also induces
platelet aggregation and clot formation.100 Furthermore, fibri-
nogen and fibrin also activate macrophages and cytokine
production through TLR4.101,102

In addition to their roles in coagulation, activated
coagulatory factors, such as thrombin, FXa and FVIIa, also
augment the initial inflammatory response. Treatment with a
recombinant inhibitor of the FVIIa/TF complex attenuates the
pro-inflammatory response and prolongs survival rates in a
rhesus monkey model of Ebola hemorrhagic fever.103 The pro-
inflammatory function of coagulation factors is mediated
through their activation of PARs (PAR-1, -2, -3 and -4), which
are mainly expressed in platelets and other cell types, including
ECs, macrophages, mast cells, eosinophils, myocytes and
gastrointestinal and bronchial epithelial cells.19,89,104 PAR-1,
-3 and -4 are activated by thrombin, whereas PAR-2 is
activated by FVIIa and FXa but not by thrombin. PAR-1 is
also responsible for FXa signaling.19 PAR signaling activates
ECs, platelets and leukocytes to express pro-inflammatory
cytokines and chemokines, and increases the permeability of
ECs and the adhesion and chemotaxis of leukocytes
(Figure 2b).19 The TF/thrombin/PAR-1 pathway promotes
the deleterious innate inflammatory response to an influenza
virus infection in mice.89,104 PAR-2 plays both a protective and
a pathogenic role in response to an H1N1 infection.105,106 The
activation of PAR-4 exacerbates acute lung injury, inflamma-
tion and death through platelet activation and a PAR-4
antagonist (pepducin p4pal-10) protects mice during influenza
virus infection.20 Taken together, these results suggest that
coagulation factors mainly play pathogenic roles through
PAR-1 and PAR-4, which may serve as therapeutic targets
against IAV infection.

THE HOMEOSTASIS OF THE INFLAMMATORY

RESPONSE IS MAINTAINED BY INTRINSIC

ANTI-COAGULANT COMPONENTS IN IAV INFECTION

To keep the platelet activation and coagulation cascade in
check, coagulation is well regulated by three major antic-
oagulant mechanisms, which are protein C (PC), antithrombin
(AT) and the tissue factor pathway inhibitor (TFPI;
Figure 1a).107 A deficiency in anticoagulants may result in
acquired thrombophilia, a condition in which there is an
increased tendency to form blood clots.

PC, a major endogenous anticoagulant, is activated by
thrombin.108 Activated PC cleaves the activated FVa and FVIIIa
to inhibit the coagulation cascades.108 In addition to its anti-
coagulatory role, activated PC also exerts anti-inflammatory
activity by inhibiting pro-inflammatory cytokine production
and leukocyte infiltration.109–113 Reduced PC, on the other
hand, increases the generation of thrombin during an influenza
virus infection.48 However, because of the complex network
that regulates coagulation, contradictory effects of PC are
often observed in lethal H1N1 influenza in mice: while it can

inhibit inflammation and pulmonary coagulopathy, it also
facilitates neutrophil influx and protein leakage into the
bronchoalveolar.114,115 Additionally, anti-PC antibody treat-
ment results in delayed mortality,114 but recombinant activated
PC treatment does not affect the outcome.115 Therefore, the
function of PC during influenza virus infection remains
uncertain.

AT (also known as antithrombin III) is a serine protease
inhibitor produced by the liver. AT functions as an
anticoagulant by inhibiting thrombin, as well as FXa, FIXa,
FIa and FXIIa, and its activity is increased by heparin.116 By
binding to thrombin, AT directly suppresses the activation of
pro-inflammatory cells (leukocytes, ECs and platelets).117

Furthermore, AT inhibits leukocyte rolling, adhesion and
activation directly by binding to receptors on the leukocyte
or indirectly by endothelial cell-released PGI(2) that tethers AT
to cell surface glycosaminoglycan.118,119 Of further interest,
AT possesses antiviral activity against HIV,120,121 HSV122,123

and HCV.124 The antiviral activities of AT reside in its serine
protease inhibitor activity against the hemagglutinin of influ-
enza A virus H1N1 in vitro and in vivo.125 In line with this,
several proteases (Gzma, Tmprss4, Elane, Ctrl, Gzmc and
Gzmb) are upregulated in the lung after mice are infected
with the H1N1 virus, and treatment with serine protease
inhibitors protects mice from the fatal infection.126

TFPI is another serine protease inhibitor present in endothe-
lia and platelets. By targeting the TF-FVIIa complex, it inhibits
coagulation cascades and modulates platelet pro-coagulant
activity.127 However, the function of TFPI in inflammation
or viral infection remains largely unknown.

ADAMTS13 is an anticoagulant protease that cleaves vWF.
It is produced in liver stellate cells and endothelial cells and is
also present in platelets. Systemic inflammation reduces
ADAMTS13 activity,128 resulting in the formation of high-
molecular weight vWF multimers and increased platelet
activation.129 Acute IAV infections reduce the level of
ADAMTS13 and elevate the level of anti-ADAMTS13 anti-
bodies, which are associated with thrombotic thrombocytope-
nic purpura.35,36 A markedly high ratio of vWF to ADAMTS13
in the circulation has been found in H1N1 influenza patients
with thrombotic microangiopathy.51 The decreased level of
ADAMTS13 might result from the influenza virus-induced
cytokine storm. However, whether ADAMTS13 takes part in
the initiation and amplification of the inflammatory response is
unknown.

FIBRINOLYSIS IS INVOLVED IN BOTH LUNG

INFLAMMATION AND THE INFLUENZA A VIRUS

LIFE CYCLE

Coagulation is resolved by fibrinolysis, a process that involves a
distinct enzymatic cascade. In the physiological state, fibrino-
lysis is initiated by three serine proteases: tissue plasminogen
activator (tPA), urokinase plasminogen activator (uPA) and
kallikrein (Figure 1h).130 uPA and tPA initiate the conversion
of the zymogen plasminogen to the serine proteinase plasmin,
which dissolves the polymerized fibrin strands. Fibrinolysis is
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regulated by other molecules, including α2-antiplasmin, α2-
macroglobulin, plasminogen activator inhibitor-1 (PAI-1) and
thrombin-activatable fibrinolysis inhibitor.131 In addition to its
fibrinolysis activity, plasmin plays a critical role in a variety of
processes, including inflammation.132,133 Plasminogen binds to
different receptors on monocytes, macrophages, DCs and other
immune cells and generates plasmin, which is responsible for
the migration and recruitment of inflammatory immune cells
to lesions and subsequently stimulates the production of pro-
inflammatory cytokines and chemokines and ROS.132 In fact,
excessive activation of plasmin exacerbates the pathogenesis of
different inflammatory diseases.132

Plasminogen and plasmin play critical roles in the infectivity
of influenza viruses. The proteolytic cleavage of HA by trypsin-
like proteases in the respiratory tract can process the HA
precursor protein into two disulfide bond-linked subunits,
HA1 and HA2. This is an essential step in the life cycle and is
required for IAV infectivity.134 Influenza viruses use the
conversion of plasminogen into plasmin, and the latter
possesses a trypsin-like protease activity to cleave HA
(Figure 3b).135,136 Moreover, mini-plasmin, which is generated
by the sequential processing of plasminogen by a plasminogen
activator and elastases, has been found in the epithelial cells of
the bronchioles and is reported to process HA.137 The
accumulation of mini-plasmin in the cerebral capillaries has

also been implicated in influenza encephalitis.138,139 Therefore,
plasminogen-dependent cleavage of HA is used by influenza
viruses to increase their replication rates and infectivity
(Figure 3b). On the other hand, the binding of NA of the
influenza virus A/WSN/33 to plasminogen helps to sequestrate
plasminogen on the cell surface and increases the cleavage of
HA. This further helps in the dissemination of the virus and
the efficient replication of IAV in the brains of mice.135,136

Binding of plasminogen to NA seems to rely on the unique
sequence motif of the WSN strain.135 The activation of
plasminogen also helps with the replication of other influenza
virus strains in an NA-independent fashion. In this case,
annexin II of the host cell binds to plasminogen and activates
HA cleavage.134,140,141 Moreover, viral HA itself seems to be
able to recruit plasminogen for HA cleavage.142 Bacterial
staphylokinase can activate plasminogen to plasmin and
thereby induce cleavage of HA of the MS96 (H9N2) virus.
This mechanism may partly explain why bacterial infection can
enhance influenza infectivity.143

Plasminogen not only facilitates the infection of IAV but also
contributes to the pathogenicity of the viral infection.144

Fibrinolysis (fibrinogen degradation) is one of the underlying
mechanisms of plasminogen-driven lung inflammation and
mortality. A blockade of plasminogen fibrinolysis by 6-
aminohexanoic acid (6-AHA) treatment, for example, protects
mice from influenza virus lethality.144 Increased vascular
permeability, induced by plasminogen, helps in the recruitment
of inflammatory cells to the site of IAV infection and also
contributes to the inflammation response.144 Plasminogen
might also interact with PAR-1 to decrease survival and
increase lung inflammation after an influenza infection.89

PAI-1, encoded by the SERPINE1 gene, is a serine protease
inhibitor that inhibits the activation of tPA and uPA and,
hence, fibrinolysis (Figure 1h).145 Recently, PAI-1 was identi-
fied as an unconventional ISG that targets extracellular airway
proteases to inhibit viral glycoprotein cleavage and reduce the
infectivity of progeny viruses in vitro and in vivo (Figure 3a).146

Influenza virus infection can increase the production of PAI-1
from ECs and airway epithelial cells, which inhibits the spread
of the IAV.146,147 Increased PAI-1 expression may not protect
hosts against an IAV infection under certain circumstances; for
example, passive cigarette smoke exposure can induce PAI-1
expression, but it promotes alveolar epithelial cell apoptosis
and exacerbates lung inflammation after an IAV infection.148

BACTERIAL SUPERINFECTION AFFECTS INFLUENZA

PATHOGENESIS THROUGH THE HYPER-ACTIVATION

OF COAGULATION

Bacterial superinfection during influenza, primarily by Strepto-
coccus pneumoniae, often results in hospitalization and even the
death of patients.149–151 IAV-S. pneumoniae co-infection in
mice causes a markedly more severe disease and hyper-
activation of coagulation compared with IAV infection
alone.64 Widespread pulmonary thrombosis and the extensive
expression of TF on the endothelial, epithelial and immune
cells is found in the lung sections of S. pneumoniae-positive

Figure 3 The role of the fibrinolytic components in the IAV life
cycle. (a) The release of influenza virus particles from the host cell
is mediated by NA through the cleavage of sialic acid from
glycoproteins. PAI-1 inhibits viral glycoprotein cleavage, reducing
the spread of the virus from the host cell to uninfected surrounding
cells. (b) HA of the IAV is typically cleaved by trypsin-like proteases
to gain viral fusion capacity. Certain influenza viruses can hijack
plasmin for cleaving their HA to increase their viral infectivity and
spread. PAI-1 acts as an anti-influenza molecule through the
inhibition of HA cleavage by plasmin, as PAI-1 is the main inhibitor
of the plasminogen activators. HA, hemagglutinin; IAV, influenza A
virus; NA, neuraminidase; PAI, plasminogen activator inhibitor-1.
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1918 H1N1 autopsies and co-infected mice.64 A secondary
S. pneumoniae infection is held accountable for the over-
expression of TF, the initiation of the coagulation cascade and
thrombus formation, which contribute to severe hypoxia
and death.64

Unlike the pathogenic bacterial superinfection, the coloniza-
tion of commensal bacteria or pretreatment with probiotic
bacteria can dampen influenza-mediated acute lung injury.
Staphylococcus aureus, one of the most common commensal
bacterium colonized in the airways, induces the polarization of
M2 alveolar macrophages and inhibits the lethal inflammatory
response to an IAV infection.152 Furthermore, both oral and
nasal pretreatment with the probiotic lactic acid bacteria strains
(Lactobacillus rhamnosus CRL1505) protects mice from PR8
lethality.153,154 Pretreatment with L. rhamnosus significantly
reduces coagulatory activation mainly through the downregu-
lation of TF and the restoration of thrombomodulin levels.154

Taken together, these studies show that bacteria in the airways
affect the outcome of IAV pneumonia, and precise targeting of
the bacteria should be considered in the treatment of influenza.

CONCLUSION

Influenza virus infection causes excessive activation of ECs and
platelets, which triggers a coagulation cascade with concur-
rently impaired anti-coagulatory and fibrinolytic signaling.
Such a pro-coagulant state can cause hemorrhagic fever and
is often associated with ARDS in severe flu patients. The
aberrant coagulation system contributes to the severity of
influenza at multiple levels. The activated ECs and platelets
first produce pro-inflammatory cytokines and chemokines that
enhance inflammatory cell infiltration and increase vascular
permeability. Platelets are further activated under these cir-
cumstances. Second, coagulation factors are activated, which
further augment the inflammation via PARs on ECs, platelets
and leukocytes. Third, the expression of anticoagulant compo-
nents decreases as the ECs are activated. And last, fibrinolytic
proteases (such as plasmin) are activated by the upregulated
coagulation, which has been hijacked by the influenza virus for
viral replication and infectivity.

Understanding the cellular and molecular events of
coagulation will contribute to the development of more
precise therapeutics against IAV infections. Drugs that target
endothelial cell activation (S1P1 agonists CYM-5442 and
RP-002), anti-platelet agents (eptifibatide, aspirin, MRS 2179
and clopidogrel), anticoagulants (recombinant activated PC
and Ancrod) and protease inhibitors (6-AHA, PAI-1 and
aprotinin155) effectively hamper pathogenic IAV infection in
mice. Nevertheless, the detailed mechanisms of how coagula-
tion contributes to the pathogenesis of severe influenza,
especially in humans, remains to be investigated. A better
understanding of coagulatory homeostasis would definitely
benefit the development of more precise treatments for
epidemic and pandemic influenza.
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