Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries

Abstract

The one-bead-one-compound (OBOC) combinatorial peptide library is a powerful tool to identify ligand and receptor interactions. Here, we applied the OBOC library technology to identify mimotopes specific to the immunoglobulin E (IgE) epitopes of the major shellfish allergen tropomyosin. OBOC peptide libraries with 8–12 amino acid residues were screened with serum samples from patients with shellfish allergy for IgE mimotopes of tropomyosin. Twenty-five mimotopes were identified from the screening and their binding reactivity to tropomyosin-specific IgE was confirmed by peptide ELISA. These mimotopes could be divided into seven clusters based on sequence homology, and epitope mapping by EpiSearch of the clustered mimotopes was performed to characterize and confirm the validity of mimotopes. Five out of six of the predicted epitopes were found to overlap with previously identified epitopes of tropomyosin. To further confirm the mimicry potential of mimotopes, BALB/c mice were immunized with mimotopes conjugated to keyhole limpet hemocyanin and assayed for their capacity to induce tropomyosin-specific antibodies. BALB/c mice that received mimotope immunization were found to have an elevated level of tropomyosin-specific immunoglobulin G, but not mice that received an irrelevant mimotope. This study pioneers the successful application of the OBOC libraries using whole sera to screen and identify multiple shrimp allergen mimotopes and validates their mimicry potential using in vitro, in vivo, and in silico methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Geysen HM, Rodda SJ, Mason TJ . A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 1986; 23: 709–715.

    Article  CAS  Google Scholar 

  2. Knittelfelder R, Riemer AB, Jensen-Jarolim E . Mimotope vaccination– from allergy to cancer. Expert Opin Biol Ther 2009; 9: 493–506.

    Article  CAS  Google Scholar 

  3. Joyce JG, Krauss IJ, Song HC, Opalka DW, Grimm KM, Nahas DD et al. An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc Natl Acad Sci USA 2008; 105: 15684–15689.

    Article  CAS  Google Scholar 

  4. Wang YS, Ouyang W, Liu XJ, He KW, Yu SQ, Zhang HB et al. Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV. Vaccine 2012; 30: 2125–2130.

    Article  CAS  Google Scholar 

  5. Peng Y, Zhang Y, Mitchell WJ, Zhang G . Development of a lipopolysaccharide-targeted peptide mimic vaccine against Q fever. J Immunol 2012; 189: 4909–4920.

    Article  CAS  Google Scholar 

  6. Zhong Y, Cai J, Zhang C, Xing X, Qin E, He J et al. Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A. Virol J 2011; 8: 542.

    Article  CAS  Google Scholar 

  7. Scholl I, Wiedermann U, Forster-Waldl E, Ganglberger E, Baier K, Boltz-Nitulescu G et al. Phage-displayed Bet mim 1, a mimotope of the major birch pollen allergen Bet v 1, induces B cell responses to the natural antigen using bystander T cell help. Clin Exp Allergy 2002; 32: 1583–1588.

    Article  CAS  Google Scholar 

  8. Subbarayal B, Schiller D, Mobs C, de Jong NW, Ebner C, Reider N et al. Kinetics, cross-reactivity, and specificity of Bet v 1-specific IgG4 antibodies induced by immunotherapy with birch pollen. Allergy 2013; 68: 1377–1386.

    Article  CAS  Google Scholar 

  9. Wallmann J, Epstein MM, Singh P, Brunner R, Szalai K, El-Housseiny L et al. Mimotope vaccination for therapy of allergic asthma: anti-inflammatory effects in a mouse model. Clin Exp Allergy 2010; 40: 650–658.

    CAS  PubMed  Google Scholar 

  10. Hantusch B, Krieger S, Untersmayr E, Scholl I, Knittelfelder R, Flicker S et al. Mapping of conformational IgE epitopes on Phl p 5a by using mimotopes from a phage display library. J Allergy Clin Immunol 2004; 114: 1294–1300.

    Article  CAS  Google Scholar 

  11. Untersmayr E, Szalai K, Riemer AB, Hemmer W, Swoboda I, Hantusch B et al. Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Mol Immunol 2006; 43: 1454–1461.

    Article  CAS  Google Scholar 

  12. Pacios LF, Tordesillas L, Cuesta-Herranz J, Compes E, Sanchez-Monge R, Palacin A et al. Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: peach Pru p 3 allergen as a model. Mol Immunol 2008; 45: 2269–2276.

    Article  CAS  Google Scholar 

  13. Szalai K, Fuhrmann J, Pavkov T, Scheidl M, Wallmann J, Bramswig KH et al. Mimotopes identify conformational B-cell epitopes on the two major house dust mite allergens Der p 1 and Der p 2. Mol Immunol 2008; 45: 1308–1317.

    Article  CAS  Google Scholar 

  14. Tiwari R, Negi SS, Braun B, Braun W, Pomes A, Chapman MD et al. Validation of a phage display and computational algorithm by mapping a conformational epitope of Bla g 2. Int Arch Allergy Immunol 2012; 157: 323–330.

    Article  CAS  Google Scholar 

  15. Ganglberger E, Grunberger K, Sponer B, Radauer C, Breiteneder H, Boltz-Nitulescu G et al. Allergen mimotopes for 3-dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB J 2000; 14: 2177–2184.

    Article  CAS  Google Scholar 

  16. Ellis SE, Newlands GF, Nisbet AJ, Matthews JB . Phage-display library biopanning as a novel approach to identifying nematode vaccine antigens. Parasite Immunol 2012; 34: 285–295.

    Article  CAS  Google Scholar 

  17. Gray BP, Brown KC . Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 2014; 114: 1020–1081.

    Article  CAS  Google Scholar 

  18. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS . From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 2007; 4: 631–651.

    Article  CAS  Google Scholar 

  19. Cho CF, Behnam Azad B, Luyt LG, Lewis JD . High-throughput screening of one-bead-one-compound peptide libraries using intact cells. ACS Comb Sci 2013; 15: 393–400.

    Article  CAS  Google Scholar 

  20. Raveendra BL, Wu H, Baccala R, Reddy MM, Schilke J, Bennett JL et al. Discovery of peptoid ligands for anti-aquaporin 4 antibodies. Chem Biol 2013; 20: 351–359.

    Article  CAS  Google Scholar 

  21. Leung PS, Chu KH, Chow WK, Ansari A, Bandea CI, Kwan HS et al. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol 1994; 94: 882–890.

    Article  CAS  Google Scholar 

  22. Wai CY, Leung NY, Ho MH, Gershwin LJ, Shu SA, Leung PS et al. Immunization with hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity. PLoS One 2014; 9: e111649.

    Article  Google Scholar 

  23. Lam KS, Lake D, Salmon SE, Smith J, Chen ML, Wade S et al. A one-bead one-peptide combinatorial library method for B-cell epitope mapping. Methods 1996; 9: 482–493.

    Article  CAS  Google Scholar 

  24. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ . A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991; 354: 82–84.

    Article  CAS  Google Scholar 

  25. Miyamoto S, Liu R, Hung S, Wang X, Lam KS . Screening of a one bead-one compound combinatorial library for beta-actin identifies molecules active toward Ramos B-lymphoma cells. Anal Biochem 2008; 374:112–120.

    Article  CAS  Google Scholar 

  26. Niall HD . Automated Edman degradation: the protein sequenator. Methods Enzymol 1973; 27: 942–1010.

    Article  CAS  Google Scholar 

  27. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7: 539.

    Article  Google Scholar 

  28. Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X et al. MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 2012; 40: D271–277.

    Article  CAS  Google Scholar 

  29. Ayuso R, Lehrer SB, Reese G . Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 2002; 127: 27–37.

    Article  CAS  Google Scholar 

  30. Arnold K, Bordoli L, Kopp J, Schwede T . The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22: 195–201.

    Article  CAS  Google Scholar 

  31. Negi SS, Braun W . Automated detection of conformational epitopes using phage display peptide sequences. Bioinform Biol Insights 2009; 3: 71–81.

    Article  CAS  Google Scholar 

  32. Wheeler AW, Marshall JS, Ulrich JT . A Th1-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol 2001; 126: 135–139.

    Article  CAS  Google Scholar 

  33. Li GP, Liu ZG, Liao B, Zhong NS . Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell Mol Immunol 2009; 6: 45–50.

    Article  CAS  Google Scholar 

  34. Gray BP, Li S, Brown KC . From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug Chem 2013; 24: 85–96.

    Article  CAS  Google Scholar 

  35. Lee SS, Lim J, Cha J, Tan S, Heath JR . Rapid microwave-assisted CNBr cleavage of bead-bound peptides. J Comb Chem 2008; 10: 807–809.

    Article  CAS  Google Scholar 

  36. Chen X, Tan PH, Zhang Y, Pei D . On-bead screening of combinatorial libraries: reduction of nonspecific binding by decreasing surface ligand density. J Comb Chem 2009; 11: 604–611.

    Article  CAS  Google Scholar 

  37. Franz AH, Liu R, Song A, Lam KS, Lebrilla CB . High-throughput one-bead-one-compound approach to peptide-encoded combinatorial libraries: MALDI-MS analysis of single TentaGel beads. J Comb Chem 2003; 5: 125–137.

    Article  CAS  Google Scholar 

  38. Lee SS, Lim J, Tan S, Cha J, Yeo SY, Agnew HD et al. Accurate MALDI-TOF/TOF sequencing of one-bead-one-compound peptide libraries with application to the identification of multiligand protein affinity agents using in situ click chemistry screening. Anal Chem 2010; 82: 672–679.

    Article  CAS  Google Scholar 

  39. Leung PS, Lee YS, Tang CY, Kung WY, Chuang YH, Chiang BL et al. Induction of shrimp tropomyosin-specific hypersensitivity in mice. Int Arch Allergy Immunol 2008; 147: 305–314.

    Article  CAS  Google Scholar 

  40. Lam YF, Tong KK, Kwan KM, Tsuneyama K, Shu SA, Leung PS et al. Gastrointestinal immune response to the shrimp allergen tropomyosin: histological and immunological analysis in an animal model of shrimp tropomyosin hypersensitivity. Int Arch Allergy Immunol 2015; 167, 29–40.

    Article  CAS  Google Scholar 

  41. Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA . Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hyper-sensitivity. Eur J Biochem 1997; 245: 334–339.

    Article  CAS  Google Scholar 

  42. Kostadinova AI, Willemsen LE, Knippels LM, Garssen J . Immunotherapy – risk/benefit in food allergy. Pediatr Allergy Immunol 2013; 24, 633–644

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K.C. Cheung, Y.F. Lam, T.S. Cheung, and W.H. Wong (CUHK) for their technical assistance and Dr. David Wilmshurst (CUHK) for editing the manuscript. The authors thank the Combinatorial Chemistry Shared Resource at the University of California, Davis for assistance with design, synthesis, screening, and decoding of OBOC peptide libraries. Utilization of this Shared Resource was supported by the UC Davis Comprehensive Cancer Center Support Grant (NCI P30CA093373). This work was supported by a grant from the Research Grants Council, HKSAR, China (CUHK 463911) and a grant from the Food Allergy and Anaphylaxis Network.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary information accompanies the paper on Cellular & Molecular Immunology website: http://www.nature.com/cmi.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, N., Wai, C., Ho, M. et al. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 14, 308–318 (2017). https://doi.org/10.1038/cmi.2015.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.83

Keywords

This article is cited by

Search

Quick links