Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

MEK2 is a prognostic marker and potential chemo-sensitizing target for glioma patients undergoing temozolomide treatment

Abstract

Although temozolomide (TMZ) is the first-line chemotherapeutic agent for glioblastoma, it is often non-curative due to drug resistance. To overcome the resistance of glioblastoma cells to TMZ, it is imperative to identify prognostic markers for outcome prediction and to develop chemo-sensitizing agents. Here, the gene expression profiles of TMZ-resistant and TMZ-sensitive samples were compared by microarray analysis, and mitogen-activated protein kinase kinase 2 (MEK2) was upregulated specifically in resistant glioma cells but not in sensitive tumor cells or non-tumor tissues. Moreover, a comprehensive analysis of patient data revealed that the increased level of MEK2 expression correlated well with the advancement of glioma grade and worse prognosis in response to TMZ treatment. Furthermore, reducing the level of MEK2 in U251 glioma cell lines or xenografted glioma models through shRNA-mediated gene knockdown inhibited cell proliferation and enhanced the sensitivity of cells toward TMZ treatment. Further analysis of tumor samples from glioma patients by real-time PCR indicated that an increased MEK2 expression level was closely associated with the activation of many drug resistance genes. Finally, these resistance genes were downregulated after MEK2 was silenced in vitro, suggesting that the mechanism of MEK2-induced chemo-resistance could be mediated by the transcriptional activation of these resistance genes. Collectively, our data indicated that the expression level of MEK2 could serve as a prognostic marker for glioma chemotherapy and that MEK2 antagonists can be used as chemo-sensitizers to enhance the treatment efficacy of TMZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O et al . Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012 ; 338 : 1080 – 1084 .

    Article  CAS  Google Scholar 

  2. Chen S, Tanaka S, Giannini C, Morris J, Yan ES, Buckner J et al . Gliomatosis cerebri: clinical characteristics, management, and outcomes. J Neurooncol 2013 ; 112 : 267 – 275 .

    Article  Google Scholar 

  3. Zhao J, He H, Zhou K, Ren Y, Shi Z, Wu Z et al . Neuronal transcription factors induce conversion of human glioma cells to neurons and inhibit tumorigenesis. PLoS One 2012 ; 7 : e41506 .

    Article  CAS  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al . Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005 ; 352 : 987 – 996 .

    Article  CAS  Google Scholar 

  5. Corsa P, Parisi S, Raguso A, Troiano M, Perrone A, Cossa S et al . Temozolomide and radiotherapy as first-line treatment of high-grade gliomas. Tumori 2006 ; 92 : 299 – 305 .

    Article  CAS  Google Scholar 

  6. National Cancer Comprehensive Network . NCCN clinical practice guidelines in oncology: central nervous system cancers, v.1.2008 . Available at http://www.nccn.org/professionals/physician_gls/PDF/cns.pdf ( accessed 7 March 2008 ).

  7. National Institute for Health and Clinical Excellence (NICE) . Carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma. Technology Appraisal Guidance No. 121 . London: National Institute for Health and Clinical Excellence (NICE) ; 2007, p . 45 .

  8. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ . Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010 ; 60 : 166 – 193 .

    Article  Google Scholar 

  9. Agnihotri S, Gajadhar AS, Ternamian C, Gorlia T, Diefes KL, Mischel PS et al . Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 2012 ; 122 : 253 – 266 .

    Article  CAS  Google Scholar 

  10. Pan Q, Yang XJ, Wang HM, Dong XT, Wang W, Li Y, Li JM . Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem Biophys 2012 ; 62 : 185 – 191 .

    Article  CAS  Google Scholar 

  11. Lee ES, Ko KK, Joe YA, Kang SG, Hong YK . Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2011 ; 2 : 115 – 121 .

    Article  CAS  Google Scholar 

  12. Lu XY, Cao K, Li QY, Yuan ZC, Lu PS . The synergistic therapeutic effect of temozolomide and hyperbaric oxygen on glioma U251 cell lines is accompanied by alterations in vascular endothelial growth factor and multidrug resistance-associated protein-1 levels. J Int Med Res 2012 ; 40 : 995 – 1004 .

    Article  CAS  Google Scholar 

  13. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P . Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 2014 ; 5 : e1145 .

    Article  CAS  Google Scholar 

  14. Poteet E, Choudhury GR, Winters A, Li W, Ryou MG, Liu R et al . Reversing the Warburg effect as a treatment for glioblastoma. J Biol Chem 2013 ; 288 : 9153 – 9164 .

    Article  CAS  Google Scholar 

  15. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005 ; 352 : 997 – 1003 .

    Article  CAS  Google Scholar 

  16. Tao BB, He H, Shi XH, Wang CL, Li WQ, Li B et al . Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 2013 ; 20 : 717 – 720 .

    Article  CAS  Google Scholar 

  17. Okabe H, Lee SH, Phuchareon J, Albertson DG, McCormick F, Tetsu O . A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One 2006 ; 1 : e128 .

    Article  Google Scholar 

  18. Basto D, Trovisco V, Lopes JM, Martins A, Pardal F, Soares P, Reis RM . Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol 2005 ; 109 : 207 – 210 .

    Article  CAS  Google Scholar 

  19. Cancer Genome Atlas Research Network . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008 ; 455 : 1061 – 1068 .

    Article  Google Scholar 

  20. MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y et al . Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 2001 ; 29 : 143 – 152 .

    Article  CAS  Google Scholar 

  21. Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D et al . Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 2010 ; 102 : 1052 – 1068 .

    Article  CAS  Google Scholar 

  22. Li B, He H, Tao BB, Zhao ZY, Hu GH, Luo C et al . Knockdown of CDK6 enhances glioma sensitivity to chemotherapy. Oncol Rep 2012 ; 28 : 909 – 914 .

    CAS  PubMed  Google Scholar 

  23. Zhao Z, Liu Y, He H, Chen X, Chen J, Lu YC . Candidate genes influencing sensitivity and resistance of human glioblastoma to Semustine. Brain Res Bull 2011 ; 86 : 189 – 194 .

    Article  CAS  Google Scholar 

  24. Guo G, Yao W, Zhang Q, Bo Y . Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One 2013 ; 8 : e72079 .

    Article  CAS  Google Scholar 

  25. Roskoski R Jr, MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 2012 ; 417 : 5 – 10 .

    Article  CAS  Google Scholar 

  26. Zhang L, Shi R, He C, Cheng C, Song B, Cui H et al . Oncogenic B-Raf(V600E) abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Lett 2013 ; 337 : 125 – 132 .

    Article  CAS  Google Scholar 

  27. Chen Z, Zhang L, Xia L, Jin Y, Wu Q, Guo H et al . Genomic analysis of drug resistant gastric cancer cell lines by combining mRNA and microRNA expression profiling. Cancer Lett 2014 ; 350 : 43 – 51 .

    Article  CAS  Google Scholar 

  28. Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C et al . Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 2012 ; 13 : 773 – 781 .

    Article  CAS  Google Scholar 

  29. Hui K, Yang Y, Shi K, Luo H, Duan J, An J et al . The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo. Cancer Lett 2014 ; 354 : 189 – 199 .

    Article  CAS  Google Scholar 

  30. Boeckx C, Op de Beeck K, Wouters A, Deschoolmeester V, Limame R, Zwaenepoel K et al . Overcoming cetuximab resistance in HNSCC: The role of AURKB and DUSP proteins. Cancer Lett 2014 ; 354 : 365 – 377 .

    Article  CAS  Google Scholar 

  31. Ito M, Ohba S, Gaensler K, Ronen SM, Mukherjee J, Pieper RO . Early Chk1 phosphorylation is driven by temozolomide-induced, DNA double strand break- and mismatch repair-independent DNA damage. PLoS One 2013 ; 8 : e62351 .

    Article  CAS  Google Scholar 

  32. Tomiyasu H, Watanabe M, Sugita K, Goto-Koshino Y, Fujino Y, Ohno K et al . Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res 2013 ; 33 : 5317 – 5323 .

    CAS  PubMed  Google Scholar 

  33. Barancik M, Bohacova V, Kvackajova J, Hudecova S, Krizanova O, Breier A . SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur J Pharm Sci 2001 ; 14 : 29 – 36 .

    Article  CAS  Google Scholar 

  34. Graziosi L, Mencarelli A, Santorelli C, Renga B, Cipriani S, Cavazzoni E et al . Mechanistic role of p38 MAPK in gastric cancer dissemination in a rodent model peritoneal metastasis. Eur J Pharmacol 2012 ; 674 : 143 – 152 .

    Article  CAS  Google Scholar 

  35. Guo X, Ma N, Wang J, Song J, Bu X, Cheng Y et al . Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer 2008 ; 8 : 375 .

    Article  Google Scholar 

  36. Shen H, Xu W, Luo W, Zhou L, Yong W, Chen F et al . Upregulation of mdr1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp Hematol 2011 ; 39 : 558 – 569 .

    Article  CAS  Google Scholar 

  37. Gong X, Schwartz PH, Linskey ME, Bota DA . Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology 2011 ; 76 : 1126 – 1134 .

    Article  CAS  Google Scholar 

  38. Skarpen E, Flinder LI, Rosseland CM, Orstavik S, Wierod L, Oksvold MP et al . MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments. FASEB J 2008 ; 22 : 466 – 476 .

    Article  CAS  Google Scholar 

  39. Lu Y, Wang L, He M, Huang W, Li H, Wang Y et al . Nix protein positively regulates NF-kappaB activation in gliomas. PLoS One 2012 ; 7 : e44559 .

    Article  CAS  Google Scholar 

  40. Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, Khavari PA . IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med 2013 ; 19 : 626 – 630 .

    Article  CAS  Google Scholar 

  41. Sato A, Sunayama J, Matsuda K, Seino S, Suzuki K, Watanabe E et al . MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 2011 ; 29 : 1942 – 1951 .

    Article  CAS  Google Scholar 

  42. Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL . Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 1999 ; 19 : 5523 – 5534 .

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC81302187 and CWS14C063.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Yao, M., Zhang, W. et al. MEK2 is a prognostic marker and potential chemo-sensitizing target for glioma patients undergoing temozolomide treatment. Cell Mol Immunol 13, 658–668 (2016). https://doi.org/10.1038/cmi.2015.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.46

Keywords

Search

Quick links