Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Human trophoblast cells induced MDSCs from peripheral blood CD14+ myelomonocytic cells via elevated levels of CCL2

Abstract

Successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus. Myeloid-derived suppressor cells (MDSCs), which are capable of inhibiting T-cell responses, are highly increased in the early stages of pregnancy. Although recent reports indicate a role for MDSCs in fetal–maternal tolerance, little is known about the expansion of MDSCs during pregnancy. In the present study, we demonstrated that the trophoblast cell line HTR8/SVneo could instruct peripheral CD14+ myelomonocytic cells toward a novel subpopulation of MDSCs, denoted as CD14+HLA-DR−/low cells, with suppressive activity and increased expression of IDO1, ARG-1, and COX2. After interaction with HTR8/SVneo cells, CD14+ myelomonocytic cells secrete high levels of CCL2, promoting the expression of signal transducer and activator of transcription 3. We utilized a neutralizing monoclonal antibody to reveal the prominent role of CCL2 in the induction of CD14+HLA-DR−/low MDSCs. In combination, the results of the present study support a novel role for the cross-talk between the trophoblast cell line HTR8/SVneo and maternal CD14+ myelomonocytic cells in initiating MDSCs induction, prompting a tolerogenic immune response to ensure a successful pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cha J, Sun X, Dey SK . Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18: 1754–67.

    Article  CAS  Google Scholar 

  2. Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci 2010; 107: 11918–11923.

    Article  CAS  Google Scholar 

  3. McIntire RH, Ganacias KG, Hunt JS . Programming of human monocytes by the uteroplacental environment. Reprod Sci 2008; 15: 437–447.

    Article  CAS  Google Scholar 

  4. Houser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL . Two unique human decidual macrophage populations. J Immunol 2011; 186: 2633–2642.

    Article  CAS  Google Scholar 

  5. Nagamatsu T, Schust DJ . The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010; 63: 460–471.

    Article  CAS  Google Scholar 

  6. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R . Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 2010; 70: 4335–4345.

    Article  CAS  Google Scholar 

  7. Höchst B, Schildberg FA, Sauerborn P, Gäbel YA, Gevensleben H, Goltz D et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59: 528–535.

    Article  Google Scholar 

  8. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterol 2008; 135: 234–243.

    Article  CAS  Google Scholar 

  9. Le Bitoux M-A, Waeber S, Stamenkovic I . Myeloid cells display immunosuppression activities during pregnancy, participating to the establishment of pre-metastatic niches. Cancer Res 2013; 73: 4980.

    Google Scholar 

  10. Köstlin N, Kugel H, Spring B, Leiber A, Marmé A, Henes M et al. Granulocytic myeloid‐derived suppressor cells expand in human pregnancy and modulate T‐cell responses. Eur J Immunol 2014; 44: 2582–2591.

    Article  Google Scholar 

  11. Red-Horse K, Drake PM, Gunn MD, Fisher SJ . Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles. American J Pathol. 2001; 159: 2199–2213.

    Article  CAS  Google Scholar 

  12. Kayisli UA, Mahutte NG, Arici A . Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol. 2002; 47: 213–221.

    Article  Google Scholar 

  13. Shynlova O, Tsui P, Dorogin A, Lye SJ . Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol 2008; 181: 1470–1479.

    Article  CAS  Google Scholar 

  14. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-α and interleukin-1β in first trimester human decidual cells: implications for preeclampsia. Am J Pathol 2006; 168: 445–452.

    Article  CAS  Google Scholar 

  15. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ . Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404: 407–411.

    Article  CAS  Google Scholar 

  16. Karpus WJ, Kennedy KJ, Kunkel SL, Lukacs NW . Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med 1998; 187: 733–741.

    Article  CAS  Google Scholar 

  17. Fest S, Aldo PB, Abrahams VM, Visintin I, Alvero A, Chen R et al. Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am J Reprod Immunol 2007; 57: 55–66.

    Article  Google Scholar 

  18. Du M-R, Guo P-F, Piao H-L, Wang S-C, Sun C, Jin L-P et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 2014; 192: 1502–1511.

    Article  CAS  Google Scholar 

  19. Guo P-F, Du M-R, Wu H-X, Lin Y, Jin L-P, Li D-J . Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood 2010; 116: 2061–2069.

    Article  CAS  Google Scholar 

  20. McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK . Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein (s) and phosphorylation of MAPK. J Clin Endocrinol Metab 2001; 86: 3665–3674.

    Article  CAS  Google Scholar 

  21. Johnsen G, Basak S, Weedon-Fekjaer M, Staff A, Duttaroy A . Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta 2011; 32: 626–632.

    Article  CAS  Google Scholar 

  22. Irving J, Lysiak J, Graham C, Hearn S, Han V, Lala P . Characteristics of trophoblast cells migrating from first trimester chorionic villus explants and propagated in culture. Placenta 1995; 16: 413–433.

    Article  CAS  Google Scholar 

  23. Zhang J, Patel L, Pienta KJ . CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 2010; 21: 41–48.

    Article  CAS  Google Scholar 

  24. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Investig 2013; 123: 1580–1589.

    Article  CAS  Google Scholar 

  25. Kämmerer U, Eggert AO, Kapp M, McLellan AD, Geijtenbeek TB, Dietl J et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol 2003; 162: 887–896.

    Article  Google Scholar 

  26. Croxatto D, Vacca P, Canegallo F, Conte R, Venturini PL, Moretta L et al. Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation. PLoS One 2014; 9: e89006.

    Article  Google Scholar 

  27. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116: e74–e80.

    Article  CAS  Google Scholar 

  28. McIntire RH, Ganacias KG, Hunt JS . Programming of human monocytes by the uteroplacental environment. Reprod Sci 2008; 15: 437–447.

    Article  CAS  Google Scholar 

  29. Miwa N . IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-γ increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod 2006; 11: 865–870.

    Article  Google Scholar 

  30. Cupurdija K, Azzola D, Hainz U, Gratchev A, Heitger A, Takikawa O et al. Macrophages of human first trimester decidua express markers associated to alternative activation. Am J Reprod Immunol 2004; 51: 117–122.

    Article  Google Scholar 

  31. Atay S, Gercel‐Taylor C, Suttles J, Mor G, Taylor DD . Trophoblast‐derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol 2011; 65: 65–77.

    Article  CAS  Google Scholar 

  32. Aldo PB, Racicot K, Craviero V, Guller S, Romero R, Mor G . Trophoblast induces monocyte differentiation into CD14+/CD16+ macrophages. Am J Reprod Immunol 2014; 72: 270–284.

    Article  CAS  Google Scholar 

  33. Talmadge JE, Gabrilovich DI . History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13: 739–752.

    Article  CAS  Google Scholar 

  34. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116: 5738–5747.

    Article  CAS  Google Scholar 

  35. Luther SA, Cyster JG . Chemokines as regulators of T cell differentiation. Nature Immunol 2001; 2: 102–107.

    Article  CAS  Google Scholar 

  36. He Y-Y, He X-J, Guo P-F, Du M-R, Shao J, Li M-Q et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol 2012; 145: 161–173.

    Article  CAS  Google Scholar 

  37. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immu: 464–474.

    Article  Google Scholar 

  38. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI . Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 2005; 65: 9525–9535.

    Article  CAS  Google Scholar 

  39. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H . Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 2009; 69: 2506–2513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr Charles H. Graham (Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada) for providing the HTR8/SVneo cell line. This study was supported by grants from the National Natural Science Foundation of China (grant nos. 31470885, 31270971, 81300510, 31300752, and 31100650).

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology’s website (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qu, D., Sun, J. et al. Human trophoblast cells induced MDSCs from peripheral blood CD14+ myelomonocytic cells via elevated levels of CCL2. Cell Mol Immunol 13, 615–627 (2016). https://doi.org/10.1038/cmi.2015.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.41

Keywords

This article is cited by

Search

Quick links