Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Research Articles

Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin

Abstract

Bacterial flagellin is a unique pathogen-associated molecular pattern (PAMP), which can be recognized by surface localized Toll-like receptor 5 (TLR5) and the cytosolic NOD-like receptor (NLR) protein 4 (NLRC4) receptors. Activation of the TLR5 and/or NLRC4 signaling pathways by flagellin and the resulting immune responses play important roles in anti-bacterial immunity. However, it remains unclear how the dual activities of flagellin that activate the TLR5 and/or NLRC4 signaling pathways orchestrate the immune responses. In this study, we assessed the effects of flagellin and its mutants lacking the ability to activate TLR5 and NLRC4 alone or in combination on the adaptive immune responses against flagellin. Flagellin that was unable to activate NLRC4 induced a significantly higher antibody response than did wild-type flagellin. The increased antibody response could be eliminated when macrophages were depleted in vivo. The activation of NLRC4 by flagellin downregulated the flagellin-induced and TLR5-mediated immune responses against flagellin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410: 1099–1103 .

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011; 477: 596–600 .

    Article  CAS  PubMed  Google Scholar 

  3. Kofoed EM, Vance RE . Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477: 592–595 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donnelly MA, Steiner TS . Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem 2002; 277: 40456–40461 .

    Article  CAS  PubMed  Google Scholar 

  5. Malapaka RR, Adebayo LO, Tripp BC . A deletion variant study of the functional role of the Salmonella flagellin hypervariable domain region in motility. J Mol Biol 2007; 365: 1102–1116 .

    Article  CAS  PubMed  Google Scholar 

  6. Mortimer CK, Gharbia SE, Logan JM, Peters TM, Arnold C . Flagellin gene sequence evolution in Salmonella. Infect Genet Evol 2007; 7: 411–415 .

    Article  CAS  PubMed  Google Scholar 

  7. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4: 1247–1253 .

    Article  CAS  PubMed  Google Scholar 

  8. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL et al. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335: 859–864 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9: 1171–1178 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 2012; 13: 449–456 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011; 477: 596–600 .

    Article  CAS  PubMed  Google Scholar 

  12. Carsiotis M, Weinstein DL, Karch H, Holder IA, O'Brien AD . Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect Immun 1984; 46: 814–818 .

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stecher B, Hapfelmeier S, Muller C, Kremer M, Stallmach T, Hardt WD . Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 2004; 72: 4138–4150 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng H, Carlson AQ, Guo YW, Yu YM, Collier-Hyams LS, Madara JL et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 2003; 171: 3668–3674 .

    Article  CAS  PubMed  Google Scholar 

  15. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511 .

    Article  CAS  PubMed  Google Scholar 

  16. Sanders CJ, Yu Y, Moore DA, 3rd, Williams IR, Gewirtz AT. Humoral immune response to flagellin requires T cells and activation of innate immunity. J Immunol 2006; 177: 2810–2818 .

    Article  Google Scholar 

  17. Sanders CJ, Franchi L, Yarovinsky F, Uematsu S, Akira S, Nunez G et al. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. Eur J Immunol 2009; 39: 359–371 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vijay-Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT . TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur J Immunol 2010; 40: 3528–3534 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 2006; 7: 868–874 .

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH et al. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 2012; 5: 288–298 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, Akira S et al. TLR5-deficient mice lack basal inflammatory and metabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J Immunol 2011; 186: 5406–5412 .

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Lopez A, Rosales-Reyes R, Alpuche-Aranda CM, Ortiz-Navarrete V . Salmonella downregulates Nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death. J Immunol 2013; 190: 1201–1209 .

    Article  CAS  PubMed  Google Scholar 

  23. Kozlova D, Sokolova V, Zhong M, Zhang E, Yang J, Li W et al. Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol Sin 2014; 29: 33–39 .

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W et al. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem Biophys Res Commun 2010; 392: 582–587 .

    Article  CAS  PubMed  Google Scholar 

  25. Mizel SB, Bates JT . Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 2010; 185: 5677–5682 .

    Article  CAS  PubMed  Google Scholar 

  26. McCoy SL, Kurtz SE, Hausman FA, Trune DR, Bennett RM, Hefeneider SH . Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. J Biol Chem 2004; 279: 17217–17223 .

    Article  CAS  PubMed  Google Scholar 

  27. Xiao Y, Liu F, Yang J, Zhong M, Zhang E, Li Y et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol 2014; 12, 729–742 .

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Goncalves R, Mosser DM . The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008; Chapter 14:Unit 14 1.

  29. Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y et al. Flagellins of Salmonella Typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages. J Innate Immun 2014; 6: 47–57 .

    Article  CAS  PubMed  Google Scholar 

  30. van Rooijen N, Hendrikx E . Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 2010; 605: 189–203 .

    Article  CAS  PubMed  Google Scholar 

  31. Iwasaki A, Medzhitov R . Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291–295 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez-Yglesias AH, Zhao X, Quarles EK, Lai MA, Vandenbos T, Strong RK et al. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway. J Immunol 2014; 192: 1587–1596 .

    Article  CAS  PubMed  Google Scholar 

  33. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11: 1136–1142 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006; 7: 569–575 .

    Article  CAS  PubMed  Google Scholar 

  35. van Rooijen N, Hendrikx E . Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 2010; 605: 189–203 .

    Article  CAS  PubMed  Google Scholar 

  36. McKee AS, Munks MW, MacLeod MK, Fleenor CJ, Van Rooijen N, Kappler JW et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol 2009; 183: 4403–4414 .

    Article  CAS  PubMed  Google Scholar 

  37. Honko AN, Sriranganathan N, Lees CJ, Mizel SB . Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 2006; 74: 1113–1120 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO et al. Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol 2009; 16: 21–28 .

    Article  CAS  PubMed  Google Scholar 

  39. Kupz A, Guarda G, Gebhardt T, Sander LE, Short KR, Diavatopoulos DA et al. NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8(+) T cells. Nat Immunol 2012; 13: 162–169 .

    Article  CAS  PubMed  Google Scholar 

  40. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT . Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 2002; 169: 3914–3919 .

    Article  CAS  PubMed  Google Scholar 

  41. Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun 2006; 74: 694–702 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y et al. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum Vaccin Immunother 2013; 9: 1084–1092 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D . Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 2011; 71: 2466–2475 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Menard S et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 2006; 176: 6624–6630 .

    Article  CAS  PubMed  Google Scholar 

  45. Garaude J, Kent A, van Rooijen N, Blander JM . Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med 2012; 4: 120ra16 .

    Article  PubMed  Google Scholar 

  46. Cummings LA, Barrett SL, Wilkerson WD, Fellnerova I, Cookson BT . FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol 2005; 174: 7929–7938 .

    Article  CAS  PubMed  Google Scholar 

  47. Simon R, Tennant SM, Wang JY, Schmidlein PJ, Lees A, Ernst RK et al. Salmonella enterica serovar enteritidis core O polysaccharide conjugated to H:g,m flagellin as a candidate vaccine for protection against invasive infection with S. enteritidis. Infect Immun 2011; 79: 4240–4249 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bates JT, Uematsu S, Akira S, Mizel SB . Direct stimulation of tlr5+/+ CD11c+ cells is necessary for the adjuvant activity of flagellin. J Immunol 2009; 182: 7539–7547 .

    Article  CAS  PubMed  Google Scholar 

  49. Miao EA, Andersen-Nissen E, Warren SE, Aderem A . TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007; 29:275–288 .

    Article  CAS  PubMed  Google Scholar 

  50. Nordlander S, Pott J, Maloy KJ . NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 2014; 7: 775–785 .

    Article  CAS  PubMed  Google Scholar 

  51. Tsuji NM, Nowak B . IL-18 and antigen-specific CD4(+) regulatory T cells in Peyer’s patches. Ann N Y Acad Sci 2004; 1029: 413–415 .

    Article  CAS  PubMed  Google Scholar 

  52. Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci U S A 2011; 108: 12419–12424 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salaun B, Romero P, Lebecque S . Toll-like receptors’ two-edged sword: when immunity meets apoptosis. Eur J Immunol 2007; 37: 3311–3318 .

    Article  CAS  PubMed  Google Scholar 

  54. Lavelle EC, Murphy C, O’Neill LA, Creagh EM . The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 2010; 3: 17–28 .

    Article  CAS  PubMed  Google Scholar 

  55. Giron JA, Torres AG, Freer E, Kaper JB . The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 2002; 44: 361–379 .

    Article  CAS  PubMed  Google Scholar 

  56. Hughes EA, Galan JE . Immune response to Salmonella: location, location, location? Immunity 2002; 16: 325–328 .

    Article  CAS  PubMed  Google Scholar 

  57. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 2005; 102: 9247–9252 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taxman DJ, Huang MT, Ting JP . Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 2010; 8: 7–11 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant numbers 81202381 and 81202312), the National Basic Research Program of China (973 Program) (Grant number 2012CB518904), the National S&T Major Project on Major Infectious Diseases (Grant numbers 2012ZX10001-008 and 2008ZX10001-010) from the Ministry of Science and Technology of the People’s Republic of China. We sincerely thank the Core Facility and Technical Support, Wuhan Institute of Virology and Xuefang An for valuable assistance in the animal studies and Ying Sun, Rong Bao, and Benxia He for their help with the sample collection.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website (http://www.nature.com/cmi)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, J., Zhang, E. et al. Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin. Cell Mol Immunol 13, 514–523 (2016). https://doi.org/10.1038/cmi.2015.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.33

Keywords

This article is cited by

Search

Quick links