Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Regulatory T cells turn pathogenic

Abstract

Foxp3+ regulatory T (Treg) cells are considered a sub-lineage of CD4+ T cells that are protective against autoimmunity due to their essential roles in maintaining immune homeostasis and self-tolerance. However, Treg cells are unstable in vivo in terms of lineage specialization and suppressive function. These unstable Treg cells play roles in the pathogenesis of diseases, which cause safety concerns regarding human Treg cell therapy. In this review, we highlight recent findings that demonstrate the pathogenic conversion of Treg cells in different disease models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bluestone JA . Mechanisms of tolerance. Immunol Rev 2011; 241: 5–19.

    Article  CAS  PubMed  Google Scholar 

  2. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK . Type 1 T regulatory cells. Immunol Rev 2001; 182: 68–79.

    Article  CAS  PubMed  Google Scholar 

  3. Weiner HL . Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001; 182: 207–14.

    Article  CAS  PubMed  Google Scholar 

  4. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  5. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    CAS  PubMed  Google Scholar 

  6. Liu Z, Tugulea S, Cortesini R, Suciu-Foca N . Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28− T cells. Int Immunol 1998; 10: 775–783.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang H, Ware R, Stall A, Flaherty L, Chess L, Pernis B . Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing V beta 8 TCR: a role of the Qa-1 molecule. Immunity 1995; 2: 185–194.

    Article  CAS  PubMed  Google Scholar 

  8. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013; 14: 307–308.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA . Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25− precursors. J Immunol 2002; 169: 4183–4189.

    Article  CAS  PubMed  Google Scholar 

  10. You S, Leforban B, Garcia C, Bach JF, Bluestone JA, Chatenoud L . Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci USA 2007; 104: 6335–6340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rudensky AY . Regulatory T cells and Foxp3. Immunol Rev 2011; 241: 260–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003; 100: 15059–15064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30: 899–911.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    Article  CAS  PubMed  Google Scholar 

  16. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  17. Tang Q, Bluestone JA . Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harbor Perspect Med 2013; 3 (11).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  19. Williams LM, Rudensky AY . Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007; 8: 277–284.

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Lahl K, Hori S, Loddenkemper C, Chaudhry A, deRoos P et al. Cutting edge: depletion of Foxp3+ cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol 2009; 183: 7631–7634.

    Article  CAS  PubMed  Google Scholar 

  21. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329–341.

    Article  CAS  PubMed  Google Scholar 

  22. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ . The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 2009; 10: 595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 2009; 458: 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 2011; 17: 983–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 2011; 17: 975–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 2009; 326: 986–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tontonoz P, Spiegelman BM . Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.

    Article  CAS  PubMed  Google Scholar 

  28. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012; 486: 549–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y et al. A special population of regulatory T cells potentiates muscle repair. Cell 2013; 155: 1282–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB . Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 2010; 207: 1409–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shafiani S, Dinh C, Ertelt JM, Moguche AO, Siddiqui I, Smigiel KS et al. Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to interleukin-12. Immunity 2013; 38: 1261–1270.

    Article  CAS  PubMed  Google Scholar 

  32. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 2007; 204: 2159–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Facciabene A, Motz GT, Coukos G . T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012; 72: 2162–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009; 10: 1000–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008; 29: 44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Setoguchi R, Hori S, Takahashi T, Sakaguchi S . Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005; 201: 723–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 2012; 36: 262–275.

    Article  CAS  PubMed  Google Scholar 

  38. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY . Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 2009; 10: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY . Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010; 463: 808–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Birzele F, Fauti T, Stahl H, Lenter MC, Simon E, Knebel D et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in human. Nucleic Acids Res 2011; 39: 7946–7960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446: 685–689.

    Article  CAS  PubMed  Google Scholar 

  42. Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY . Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 2014; 158: 749–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Liang Y, LeBlanc M, Benner C, Zheng Y . Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 2014; 158: 734–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo J, Zhang J, Zhang X, Zhang Z, Wei X, Zhou X . Constitutive activation of MEK1 promotes Treg cell instability in vivo. J Biol Chem 2014; 289: 35139–35148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 2013; 39: 949–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H . Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 2015; 16: 178–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 2015; 16: 188–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD . Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem 2013; 288: 24494–24502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S et al. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem 2014; 289: 26872–26881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2: 301–306.

    Article  CAS  PubMed  Google Scholar 

  51. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L . Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 2006; 25: 249–259.

    Article  CAS  PubMed  Google Scholar 

  52. Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C . Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 2007; 178: 7032–7041.

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY . Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004; 21: 267–277.

    Article  CAS  PubMed  Google Scholar 

  54. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011; 475: 226–230.

    Article  CAS  PubMed  Google Scholar 

  55. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. Nature 2011; 470: 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD et al. Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med 2012; 4: 164ra59.

    Article  Google Scholar 

  57. Rivers TM . Viruses and Koch’s Postulates. J Bacteriol 1937; 33: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu L, Kitani A, Fuss I, Strober W . Cutting edge: regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178: 6725–6729.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng SG, Wang J, Horwitz DA . Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 2008; 180: 7112–7116.

    Article  CAS  PubMed  Google Scholar 

  60. Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J . Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 2009; 39: 948–955.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 2008; 205: 1983–1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001; 1: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20: 62–68.

    Article  CAS  PubMed  Google Scholar 

  64. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673–2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deknuydt F, Bioley G, Valmori D, Ayyoub M . IL-1beta and IL-2 convert human Treg into TH17 cells. Clin Immunol 2009; 131: 298–307.

    Article  CAS  PubMed  Google Scholar 

  66. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I . Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008; 112: 2340–2352.

    Article  CAS  PubMed  Google Scholar 

  67. Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenenk R, Joosten I, Koenen HJ . Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol 2011; 131: 1853–1860.

    Article  CAS  PubMed  Google Scholar 

  68. Takahashi R, Nishimoto S, Muto G, Sekiya T, Tamiya T, Kimura A et al. SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-gamma and IL-17A production. J Exp Med 2011; 208: 2055–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K et al. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 2010; 185: 842–855.

    Article  CAS  PubMed  Google Scholar 

  70. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 2012; 491: 554–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muto G, Kotani H, Kondo T, Morita R, Tsuruta S, Kobayashi T et al. TRAF6 is essential for maintenance of regulatory T cells that suppress Th2 type autoimmunity. PloS One 2013; 8: e74639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wan YY, Flavell RA . Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007; 445: 766–770.

    Article  CAS  PubMed  Google Scholar 

  73. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E . Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59: 3128–3133.

    CAS  PubMed  Google Scholar 

  74. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–1342.

    Article  CAS  PubMed  Google Scholar 

  75. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP . Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009; 206: 1717–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Piconese S, Valzasina B, Colombo MP . OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205: 825–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T et al. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 2007; 27: 145–159.

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC et al. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med 2013; 19: 1173–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA 2014; 111: E3432–E3440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol 2010; 185: 2675–2679.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research and Development 973 Program of China (Grant No. 2012CB917102), the National Natural Science Foundation of China (Grant No. 31270959) and a grant from the China Postdoctoral Science Foundation (No 2011M500422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhou, X. Regulatory T cells turn pathogenic. Cell Mol Immunol 12, 525–532 (2015). https://doi.org/10.1038/cmi.2015.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.12

Keywords

This article is cited by

Search

Quick links