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NKT cell subsets as key participants in liver physiology
and pathology
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Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in
microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by
signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-
inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance.
It is becoming clear that two different subsets of NKT cells—type I and type II—have different modes of antigen
recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both
NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how
the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells
to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including
CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.
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INTRODUCTION

The liver is a specialized tissue that, owing to its anatomical
location, is the first recipient of gut-derived bacteria and their
products, such as lipopolysaccharides. Therefore, the hepatic
immune response to such products has to be carefully
regulated to avoid liver injury. Liver inflammation is an integral
part of the hepatic wound-healing response to injury due to,
for example, excess fat, alcohol or viruses. Controlled inflam-
mation may be beneficial in the short term in terms of the
promotion of regeneration or an effective immune response
against pathogens. However, chronic inflammation and the
associated regenerative wound-healing response are strongly
linked to the development of fibrosis, cirrhosis and cancer.1

Compared with other peripheral organs, the liver is enriched in
a number of innate immune cells, including resident macro-
phages, Kupffer cells (KCs), dendritic cells (DCs), natural killer
(NK) cells and NK T (NKT) cells.2,3 NKT cells are particularly
enriched in the murine liver and form an important nexus that
connects innate and adaptive immunities; these cells therefore
have a crucial role in setting up the inflammatory response.
Because the two NKT cell subsets can have opposing roles in
immune responses that are mediated by the secretion of both

pro-inflammatory and anti-inflammatory cytokines, it is neces-
sary to distinguish their roles in acute and chronic inflamma-
tory conditions of the liver, such as alcoholic hepatitis,
autoimmune hepatitis (AIH) and steatohepatitis. In this review,
we discuss the current knowledge about the roles of the two
major subsets of NKT cells in inflammatory liver diseases and
the maintenance of immune tolerance.

TWO MAJOR SUBSETS OF NKT CELLS IN THE LIVER

NKT cells are innate-like T cells that express TCR-αβ chains in
addition to the typical NK cell markers and have an important
immunoregulatory role in inflammatory conditions, including
autoimmune diseases, infectious diseases and cancer.4–6

NKT cells act as a bridging system between innate and adaptive
immunities.7 These cells can recognize both exogenous
and endogenous lipid antigens in the context of the major
histocompatibility complex-like molecule CD1d.8–10 Studies
using knock-in Cxcr6gfp/+ mice have demonstrated that type
I NKT cells migrate to the liver sinusoids within minutes of α-
galactosylceramide (αGalCer) injection.11,12 The enrichment
and constitutive activation of NKT cells in the liver sinusoids
indicate that these cells participate in the mechanisms that
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control the induction and/or prevention of inflammation in the
liver in various immunological responses.4,13,14

CD1d-restricted NKT cells are classified into two main
subsets, that is, type I or invariant NKT cells and type II or
diverse NKT cells. Type I NKT cells are more prevalent than
type II NKT cells in mice and comprise ~ 50% of murine
intrahepatic lymphocytes.4,15–17 Type I NKT cells express a
conserved semi-invariant αβTCR that is encoded predomi-
nantly by a germ line Vα gene (Vα24 in humans and Vα14 in
mice) and Jα18 gene segments paired with a more diverse set of
non-germ line Vβ genes (Vβ8.2, Vβ7, or Vβ2 in mice and Vβ11
in humans).18 In humans, type I NKT cells comprise ~ 0.1–1%
of the circulating T cells. CD4- and CD4+ type I NKT cells
predominantly secrete Th1- and Th2-type cytokines, respec-
tively, and Th1-like CD8α+ type I NKT cells have also been
described.

Type II NKT cells are more abundant than type I cells in
humans, and as in mice, they express relatively diverse TCR-α-
and TCR-β chains. Recently, we demonstrated that one major
subset of type II NKT cells that is reactive to the β-linked
self-glycolipid sulfatide expresses an oligoclonal TCR repertoire
that predominant uses the Vα3/Vα1-Jα7/Jα9 and Vβ8.1/Vβ3.1-
Jβ2.7 gene segments.19 Recent insights derived from the crystal
structures of a type I NKT cell TCR-αGalCer/CD1d complex
and a type II NKT cell TCR-sulfatide/CD1d complex suggest
that distinct molecular motifs act in TCR recognition by type I
and type II NKT cells.21–23 The type I NKT TCR binds to
CD1d in a parallel configuration that mainly involves the
α-chain. The crucial residues within the CDR2β, CDR3α and
CDR1α loops of the semi-invariant TCR of type I NKT cells
have been demonstrated to be involved in the recognition of
the αGalCer/CD1d complex.24 In contrast, the sulfatide-
reactive type II NKT TCR binds its ligands primarily with its
β-chain by pinning them against the CD1d surface.

ANTIGEN RECOGNITION AND ACTIVATION OF TYPE I

NKT CELLS

Type I NKT cells were initially characterized as a major subset
in mice that are reactive to a marine sponge-derived glycolipid
αGalCer; this glycolipid stimulates these mice like a super-
antigen in that it binds with high affinity to CD1d and type I
NKT TCRs.25 However, other glycolipids, such as isoglobo-
trihexosylceramide, are also able to activate type I NKT cells in
a CD1d-dependent manner, but none of them are as effective
as αGalCer.27–30 In addition to lipid antigens, type I NKT cells
are also activated following toll-like receptor (TLR)-mediated
signaling and/or by cytokines (interleukin (IL)-12, IL-18 or
type I interferon (IFN)) secreted by activated antigen-
presenting cells (APC), such as KCs, hepatocytes and myeloid
DCs.31 Following activation, type I NKT cells can secrete Th1-,
Th2- or Th17-like cytokines. Thus, depending upon the tissue
milieu, antigen-presenting cell and lipid antigen, type I
NKT cells can secrete different cytokine profiles. For example,
type I NKT cells predominantly secrete IFN-γ following
ischemia, toxin-induced injury or stimulation in the presence

of IL-18 plus IL-12, but these cells secrete IFN-γ, IL-4 and
IL-17 in response to αGalCer.33

Following activation, type I NKT cells can further stimulate
DCs, NK cells, B cells, and conventional CD4+ and CD8+

T cells that can further mediate liver damage.18,34 Furthermore,
cytokines and chemokines secreted by activated type I
NKT cells result in the recruitment of neutrophils, myeloid
cells and monocytes to the liver.35–40 Type I NKT cells can
promote fibrogenesis involving the Hedgehog pathway,41,42 and
cytokines including osteopontin (OPN) lead to hepatic stellate
cell (HSC) activation.14,39 In addition, activated type I
NKT cells can also kill hepatocytes directly via Fas/FasL
interactions or indirectly by activating NK cells. KCs are
located at the interface of the portal vein (within the sinusoidal
vascular space) and the systemic circulation, and this critical
location makes these cells key factors in the activation of the
immune response by recognizing danger signals (pathogen-
associated molecular patterns and danger-associated molecular
patterns) through the expression of TLR and nucleotide-
binding oligomerization domain-like receptors.43 Activated
KCs produce a variety of pro-inflammatory cytokines, such
as IL-1β, IL-18, tumor necrosis factor (TNF)-α and IL-12,
which have important roles in regulating the recruitment and
activation of type I NKT cells.44,45

ANTIGEN RECOGNITION AND ACTIVATION OF

TYPE II NKT CELLS

Our laboratory has identified and characterized a major subset
of type II NKT cells that is reactive to the self-glycolipid
sulfatide.4,19,20,36 Some type II NKT cells have also been
demonstrated to recognize other β-linked glycolipids, including
β-D-glucopyranosylceramide, βGluCer and βGalCer, as well as
some pollen-derived lipids.21,46,47 More recently, we demon-
strated that other self-phospholipids, including lysophosphati-
dylcholine (LPC), lysosphingomyelin and lyso-platelet-
activating factor, can effectively stimulate a subset of type II
NKT cells in a CD1d-dependent manner both in vitro and
in vivo.48 IL-13-secreting LPC-reactive type II NKT cells have
also been reported to be increased in myeloma patients relative
to healthy donors.49 A subset of type II NKT cells can also be
stimulated by the lysophosphatidylethanolamine,50 which is
generated in hepatocytes following hepatitis B infection.51

Phospholipids, such as phosphatidylglycerol, phosphatidylino-
sitol and cardiolipin, can also activate murine type II NKT cell
hybridomas.52 Recently, murine and human type II NKT cells
specific for glucosylsphingosine 1 have been found to
be associated with disease severity in a murine model and also
in peripheral blood mononuclear cells from Gaucher disease
patients.53

In contrast to the predominantly pro-inflammatory role of
type I NKT cells in liver damage, type II NKT cells are able
to suppress the pro-inflammatory response induced by type I
NKT cells and consequently protect against liver damage.
Furthermore, the activation of type II NKT cells with sulfatide
does not induce the activation of B, NK or T cells.54 Therefore,
the study of type II NKT cells following sulfatide activation has
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uncovered a dominant immunoregulatory pathway that has
been demonstrated to be involved in protection against hepatic
ischemia reperfusion injury (IRI),35 type 1 diabetes55 and
experimental autoimmune encephalomyelitis.20

CROSS-REGULATION BETWEEN TYPE I AND TYPE II

NKT CELLS

A major mechanism of cross-regulation between type I and
type II NKT cells is revealed following the activation of type II
NKT cells by a self-glycolipid or lysophospholipid. Following
the administration of sulfatide, CD1d is upregulated on
plasmacytoid DCs, but not conventional DCs (cDCs), which
results in the activation of sulfatide-reactive type II NKT cells
and the secretion of IL-12 and macrophage inflammatory
protein-2, which in turn leads to the recruitment of type I
NKT cells into the liver. Interestingly, these cellular interactions
lead to the tolerization of cDCs and anergy induction in the
recruited type I NKT cells.36 Both anergic type I NKT cells and
IL-10-secreting cDCs also inhibit adaptive immunity following
sulfatide-mediated activation of type II NKT cells by suppres-
sing the cytokine burst and neutrophil recruitment into the
liver, which thereby attenuates concanavalin A-induced hepa-
titis, IRI and alcoholic liver disease (ALD).36,38 A similar
mechanism of immune regulation by type II NKT cells has
been found to be involved following their activation by LPC.48

Sulfatide-mediated activation of type II NKT cells can also
modulate the activities of other immune cells, such as myeloid-
derived suppressor cells (MDSCs), CD11b+Gr-1+ cells, B cells
and neutrophils.37,38,56 The opposing roles of type I and type II
NKT cells have also been demonstrated in immune
responses against parasites, antitumor immunity and autoim-
munity (Figure 1).4,57–59

In contrast, there are experimental data that suggest that type
I NKT cells could potentially cross-regulate type II NKT
activity.59 It has been demonstrated that the sulfatide stimula-
tion of type II NKT cells completely inhibits the protective
effect of αGalCer in the 15-12RM fibrosarcoma model but does
not completely abrogate the protection afforded by αGalCer in
CT26 colon cancer lung metastasis, and that type I NKT cells
may exhibit moderate suppressive effects on the activity of type
II NKT cells. A better understanding of the mechanisms
involved in cross-regulation between type I and type II NKT
cell subsets is crucial for the development of strategies to
manipulate the outcome of the immune response in human
inflammatory liver diseases.

More recently, type II NKT cell activation induced by IL-25
has been demonstrated to be involved in the regulation of
inflammation in adipose tissue and the prevention of high fat
diet-induced obesity in mice. The transfer of type II NKT cells
into obese mice induces greater and more prolonged weight
loss and improved glucose tolerance.60

Interestingly, similar to conventional T cells, type I
NKT cells also become unresponsive or anergic after a
secondary challenge following a primary TCR activation with
αGalCer. Anergic type I NKT cells express greater levels
of programmed death 1 (PD-1). Furthermore, blocking the

PD-1/PD ligand 1 (PD-L1) pathway prevents αGalCer-induced
but not bacterial lipid- or sulfatide-induced anergy in type I
NKT cells61,62 Recent studies have further indicated the
involvement of the E3-ubiquitin ligase Cbl-b and mTOR
signaling in anergy induction in type I NKT cells.63

ROLES OF NKT CELL SUBSETS IN PATHOLOGICAL

CONDITIONS IN THE LIVER

In the majority of experimental models of chronic liver
diseases, including those of IRI,64 con A-induced
hepatitis,36,54,65 primary biliary cirrhosis (PBC)66 and nonalco-
holic fatty liver disease (NAFLD),67–69 type I NKT cells have
been demonstrated to have a pathogenic role. However, in
acute liver injury models, type I NKT cells can have a protective
role. For example, in a mouse model of biliary obstruction and
cholestasis, and in a model of acute CCl4-induced fibrosis, type
I NKT cell-dependent inhibition of macrophage inflammatory
protein-2, KC and TNFα production leads to the inhibition of
both neutrophil infiltration and liver injury.70–72 Collectively,
these data suggest that while in acute injury, type I NKT cell
activation may be protective, in chronic conditions, type I
NKT cells promote liver injury. Consistent with the dual role of
type I NKT cells, Wang et al.73 reported that αGalCer-mediated
activation of these cells promotes neutrophil infiltration and
hepatitis in a STAT-6 dependent manner, whereas this activa-
tion can also control liver injury by inducing neutrophil
apoptosis via a STAT-1-dependent mechanism.

Alcoholic liver disease
ALD is a common medical condition that results from chronic
alcohol abuse and is among the most frequent causes of death
in the general population. This disease can progress from
hepatic steatosis (fatty liver) to alcoholic hepatitis (10–35%)
and ultimately to alcoholic fibrosis or cirrhosis (8–20%). The
cellular and molecular mechanisms underlying ALD involve
complex interactions between innate immune cells (NK, NKT
and γδ T cells), parenchymal cells (hepatocytes) and non-
parenchymal cells (sinusoidal endothelial cells, KCs, HSCs and
DCs).74 Activation of KCs via LPS/TLR signaling-dependent
mechanisms following alcohol consumption results in
increased secretion of a variety of pro-inflammatory cytokines
and chemokines in addition to eicosanoids and reactive oxygen
species.75,76 Indeed, TNFα and IL-1β levels are increased in the
sera and livers of alcohol-fed mice, and the neutralization
of IL-1β in KC attenuates type I NKT cell accumulation and
steatosis. Moreover, Cui et al.44 demonstrated that KC-derived
NLRP3 inflammasome activation and IL-1β release are essential
for hepatic NKT cell accumulation and activation in ALD.
Consistently, gut-derived bacteria or their products, such as
lipopolysaccharides, that are leaked into the circulation activate
KCs via nucleotide-binding oligomerization domain-like
receptors, specifically NLRP3, which could lead to NKT cell
activation.44

Using a murine model of chronic plus binge ethanol feeding
with a Lieber-DeCarli liquid diet, we recently demonstrated
that an increased number of activated type I, but not type II
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NKT, cells accumulate in the liver, which is consistent with
another model of mice that are fed alcohol via an intragastric
tube.38,40,77,78 Moreover, Jα18− /− mice (which are deficient in
type I NKT cells) and CD1d− /− mice (which are deficient in
both NKT cell subsets) are protected against liver injury after
alcohol intake.38,40 The activation of type I NKT cells is
required for the hepatic recruitment of inflammatory Gr-1
+CD11b+ cells and neutrophils that results in liver tissue
damage. Accordingly, several cytokines and chemokines that
are associated with inflammation and neutrophil recruitment,
including OPN, IL-1β, IL-6, TNFα, macrophage inflammatory
protein-2, MIP-1β and CXCR1, are upregulated in the livers of
alcohol-fed wild-type mice but not in type I NKT cell-deficient
mice. Furthermore, the inhibition of type I NKT cells via a
direct pathway involving all-trans retinoic acid or the indirect
mechanisms of sulfatide-mediated activation of type II
NKT cells or the administration of an anti-CD1d blocking
antibody significantly suppresses this pro-inflammatory cascade
and ameliorates ALD.38,40 Importantly, the RARγ-signaling
pathway is involved in the inhibition of type I NKT cells by
ATRA owing to the greater expression of RARγ in these cells;
accordingly, the clinically relevant RARγ agonist tazarotene
blocks the development of ALD.38

In humans, the role of type I NKT cells in ALD has not been
carefully investigated. However, consistent with the data from
murine models, pro-inflammatory cytokines, including TNFα,

IL-6, IL-8, OPN and IL-1, are increased in the sera and liver
biopsies of humans with alcoholic hepatitis and may be
correlated with disease severity/mortality.13 Furthermore,
E-selectin expression is highly upregulated in human alcoholic
fatty livers but not in alcoholic cirrhosis, which suggests that
E-selectin may have a role in hepatic neutrophil infiltration and
injury in the early stages of disease.77 Moreover, in patients
with alcohol hepatitis, reduced NKG2D expression in CTLs,
NK cells and type I NKT cells has been found to correlate with
disease severity, which suggests that these cells are involved in
promoting liver damage.79 In contrast, increased frequencies of
IL-22-producing cells and increased IL-17 plasma levels are
associated with improved prognoses in patients with alcoholic
hepatitis.79–81

Nonalcoholic fatty liver disease
NAFLD is the most frequent chronic liver disease. NAFLD
affects 10–20% of the population in developed countries, and
its prevalence is increasing with the rise of diabetes and obesity.
NAFLD is defined by the abnormal accumulation of fat within
the liver, or steatosis, which can progress to severe inflamma-
tory cell infiltration or nonalcoholic steatohepatitis (NASH)
accompanied by fibrosis or necrosis or progress to liver
cirrhosis and hepatocellular carcinoma (HCC).82,83 Although
a detailed CD1d tetramer-based analysis of the activation
profiles of NKT cell subsets in NASH is lacking, reduced

Alcohol/High fat 
diet/Ischemia/Microbes

TLR/Cytokines
Activated Type II

NKT Cells

LPC Sulfatide

Tolerization

Protection from Liver
Disease

OPN IFN
CCR6

Fas/FasL
NK Activation

Hepatic 
Stellate cell 
Activation

Hepatocyte 
killing

Neutrophils 
CD11 b+Gr1+

Accumulation

Activated Type I 
NKT Cells

cDC

Steatosis/Fibrosis/Necrosis/HCC

Type I NKT activation
Neutrophil recruitment
HSC activation
Adaptive ImmunityIN

H
IB

IT
IO

N

KC

Figure 1 A proposed model depicting the opposing roles of type I and type II NKT cells in inflammatory diseases in the liver. Type I
NKT cells are rapidly activated following liver injuries induced by alcohol, high-fat diet, ischemia and/or gut-derived microbial products.
Liver-resident antigen-presenting cells, such as KCs, and TLRs/cytokines mediate their activation, which results in the cytokine/chemokine-
dependent recruitment of myeloid cells (CD11b+Gr-1+) and neutrophils, and the activation of HSC and NK cells. These cellular
interactions lead to steatosis, fibrosis and hepatocyte necrosis. These events are also involved in the development of HCC. In contrast, type
II NKT cells are activated following the presentation of self-lipids, such as sulfatide and LPC, which results in the induction of a cross-
regulatory pathway that inhibits type I NKT cells, tolerizes cDCs and blocks the inflammatory cascade and liver disease. cDCs,
conventional DCs; HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; KC, Kupffer cell; LPC, lysophosphatidylcholine; NK, natural
killer; NKT, natural killer T cells; OPN, osteopontin; TLR, toll-like receptor.
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numbers of type I NKT cells are found in mice fed methionine/
choline-deficient or high-fat diets (CD-HFDs) and in ob/ob
mice.67,84 Activation of KC or the Tim-3/Gal-9 signaling
pathway can lead to apoptosis in type I NKT cells in the liver,
and could thus contribute to steatosis and insulin
resistance.45,67,85 Indeed, the depletion of KCs via treatment
with gadolinium chloride reduces hepatic IL-12 expression and
does not lead to type I NKT apoptosis, and thereby prevents
diet-induced hepatic steatosis and insulin resistance. Consis-
tently, the activation of the Hedgehog pathway and HSCs has
been revealed to be associated with type I NKT cells in mice fed
an MCD diet or a combination of a CD-HFD.68,69,86 Similarly,
the hepatic CD1d expression and increased numbers of CD3+

CD56+ cells in NASH patients suggest a potentially important
role of NKT cells in this disease.68,69,86,87

Autoimmune hepatitis
AIH is a chronic autoimmune inflammation of the liver that is
characterized by T-cell periportal and intralobular infiltration
of the liver in the absence of other liver diseases and in
association with increased serum transaminases, hypergamma-
globulinemia and hepatocyte-specific autoantibodies. AIH is
strongly linked to HLA-A1, -B8, -DR3 and -DRB1. There are at
least two subtypes of AIH; type I is characterized by
autoantibodies directed against smooth muscle antigens and
antinuclear antibodies, and type II is characterized by auto-
antibodies directed against cytochrome p450 2D6 or formimi-
notransferase cyclodeaminase. Both types also share
autoantibodies that recognize O-phosphoseryl-tRNA (Sec)
selenium transferase/soluble liver antigen.88–90 Earlier studies
revealed that while type I NKT cells are pathogenic, type II
NKT activation protects mice against ConA-induced
hepatitis.36,65 Recently, a strong correlation of high levels of
IL-17 in the serum and liver with disease severity was found in
patients with PBC and AIH, which suggests a role of IL-
17-producing type I NKT cells.91,92 Consistently, significant
increases in the frequencies of IL-17+ expressing cells have
been demonstrated in the portal areas of liver biopsies from
PBC, chronic hepatitis C (HCV), NASH and AIH patients
compared with control subjects.88 In a murine model of
αGalCer-induced liver injury, CD4+ type I NKT cells have
been found to be the main source of IL-17, and accordingly,
administration of anti-IL-17-neutralizing monoclonal antibo-
dies before αGalCer injection significantly exacerbates hepatitis,
the hepatic recruitment of neutrophils, and the production of
IL-12 and TNFα by pro-inflammatory monocytes. In contrast,
the administration of exogenous recombinant murine IL-17
before αGalCer injection attenuates hepatitis and prevents the
recruitment of inflammatory monocytes to the liver. Thus,
secretion of IL-17 by type I NKT cells could have a crucial role
in AIH.93

PBC and primary sclerosing cholangitis
Biliary diseases such as primary sclerosing cholangitis (PSC)
and PBC are characterized by an inflammatory immune
response that leads to the destruction of the bile ducts.

Cholangiocytes have been suggested to have an active role in
immune responses.94,95 Notably, murine and human cholan-
giocytes express CD1d and can present exogenous and
endogenous lipid antigens to both type I and type II NKT
cells.66 Hepatic CD1d expression and type I NKT cell numbers
have consistently been found to be elevated in patients with
PBC 95. However, CD1d expression is downregulated in the
biliary epithelia of patients with late PSC and PBC. Consistent
with the pathogenic role of type I NKT cells in other liver
diseases, an important role for type I NKT cells in the initiation
of PBC was recently demonstrated in two murine models. In
these models, NKT deficiency was found to attenuate the
development of PBC induced by the overexpression of a
dominant-negative TGF-βR in T cells or by infection with
novosphingobium aromaticivorans. It is becoming clear that
type I NKT cells cross talk with other autoreactive intrahepatic
B cells and conventional CD4/CD8 T cells that are involved in
these autoimmune diseases.90,96,97

Chronic hepatitis B and HCV infection
Chronic hepatitis B (HBV) and HCV infections account for
57% of the cases of liver cirrhosis and 78% of the cases of
primary liver cancer worldwide, and cause one million deaths
per year. Type I NKT cells may have a role in controlling HCV
infections, particularly in the early stages of HCV infection in
humans. Via IFN-γ secretion, type I NKT cells have been
demonstrated to be capable of inhibiting HCV replication in
hepatocytes,98 and their activities are positively correlated with
the outcome of acute HCV infection and the efficacy of IFN-α
treatment in chronic HCV infection. Numerous studies
have reported that type I NKT cells are significantly depleted
during chronic HCV infection, which likely contributes to the
failure of its resolution. Similarly high numbers of activated
type I NKT cells have been found in the early stages of HBV
infection in humans.99–101 The inhibitory effect of type I
NKT cells on HBV infection is likely mediated via the secretion
of IFN-γ, which inhibits HBV replication and stimulates
adaptive immune responses.97 Although NKT cells can control
HBV and HCV replication in the early stages of infection,
NKT cells may also contribute to liver injury during chronic
viral hepatitis infection via several mechanisms, including the
lysis of hepatocytes, the production of pro-inflammatory
cytokines, the induction of hepatocyte apoptosis, and the
inhibition of hepatocyte proliferation.102–104

Hepatocellular carcinoma
HCC is frequently associated with chronic inflammatory liver
diseases such as NASH and viral hepatitis.105 Generally,
NKT cells have a crucial dual role in cancer: they can promote
an antitumor response via the activation of effector CD4/CD8+
T cells; and they can also promote tumor growth by recruiting
suppressor or regulatory T cells to induce tolerance or by
producing Th2 cytokines, which subsequently result in the
inhibition of tumor antigen-specific CD8+ T-cell expansion.106

Although NKT cells are abundant in the liver, relatively fewer
studies have attempted to clarify their role in HCC.
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It has been shown that long-term feeding with a CD-HFD
induces the activation of intrahepatic CD8+ T cells and
NKT cells, as well as the secretion of inflammatory cytokines
in mice. NKT cells primarily cause steatosis via the secretion of
LIGHT, whereas CD8+ and NKT cells cooperatively induce
liver damage. Hepatocellular TLR4 and canonical nuclear
factor-κB signaling facilitate the NASH-to-HCC transition,
which suggests the involvement of distinct molecular mechan-
isms in NASH and HCC development. CD4+ type I NKT cells
can also mediate antitumor effects through the inhibition of
the inflammatory response triggered by the activation of the
oncogenic β-catenin pathway.107 In addition, NKT cells
suppress tumor growth in mice after adoptive transfer of
HCC tumor lines.50,108 In patients with HCC, there is an
increase in the frequency of NKT in the tumor relative to the
blood, and CD4+ Vα24/Vβ11 type I NKT cells secreting Th2
cytokines accumulate in human intrahepatic malignant tumors
and inhibit tumor-specific CD8+ T-cell responses.105

Liver injury induced by toxins and drugs
The liver is specialized to metabolize circulating drugs or
toxins, but the metabolism of these drugs frequently induces
liver injury.109 The pathological role of NKT cells in drug-
induced liver injury has been investigated using the murine
model of acetaminophen-induced liver injury. Type I NKT-
deficient mice have been found to be more susceptible to
acetaminophen-induced liver injury than wild-type mice.110

Similarly, chronic CCl4-, Con A- and paracetamol-induced
liver injuries are blunted in type I NKT-deficient mice.38,71

The drug or its metabolites trigger the activation of type I
NKT cells that are responsible for the massive release of high
levels of cytokines, including OPN, IFN-α and IL-4, and the
increased expression of FasL by hepatocytes, which leads to
massive hepatocellular necrosis.4,14,39,109

Ischemia and reperfusion injury and liver transplantation
IRI represents a complex inflammatory immune response that
generally occurs in a sterile environment and results in tissue
damage.111 IRI is a major problem in liver resection and liver
transplantation. IRI involves the activation of both innate and
adaptive immunity that leads to the necrotic cell death of
hepatocytes. The sterile immune response also involves signal-
ing through pattern recognition receptors such as TCRs, for
example, TLR4.112 TLR4 likely mediates the early activation of
type I NKT cells that secrete IFN-γ during liver IRI as
demonstrated recently.35 Accordingly, mice that are deficient
in type I NKT cells or the cross-regulation of type I NKT cells
following sulfatide-mediated activation of type II NKT cells
leads to significantly reduced inflammatory infiltrate, including
CD11b+Gr-1+ cells, and liver damage following reperfusion.35

The tolerization of cDCs following the activation of type II
NKT cells has a major role in the control of IRI because the
depletion of cDCs leads to an increase in hepatic injury.113

Consistent with the idea that NKT cells can control the
accumulation of granulocytes and neutrophils in tissues,
their excessive accumulation can promote uncontrolled

inflammation and tissue damage during IRI.114,115 It is also
relevant to mention that because adaptive immune responses
also become involved in IRI, the tolerization of DCs following
the cross-regulation of NKT cells should be able to blunt the
further detrimental effects of both conventional CD4+ and
CD8+ T cells.

In liver transplantation, both the host-residual and donor-
derived NKT cells exert protective functions that are particu-
larly well described in graft-versus-host disease. Whereas the
type I NKT subset is involved in protection mediated by host-
residual T cells, type II NKT cells have critical roles in donor-
derived protective effects.116,117 Indeed, on the one hand, the
adoptive transfer of type I NKT cells or the administration of
αGalCer can attenuate graft-versus-host disease in recipient
mice due to the vigorous secretion of IL-4 by type I NKT cells
and the subsequent Th2 polarization of the immune
response. On the other hand, donor type II NKT cells not
only produce IL-4-like type I NKT cells but also produce
IFN-γ, which induces apoptosis in donor CD4+ and CD8+

T cells in a Fas-dependent manner.118 Moreover, human
CD161+ CD1d-reactive BM-derived type II NKT cells have
been found to specifically suppress the mixed lymphocyte
reaction and are able to induce tolerance to allografts.119

Collectively, the appropriate targeting of the NKT cell
subsets may have an important role in the development of
strategies for reducing tissue damage due to IRI and liver
transplantation.

Liver regeneration
The liver has a substantial ability to regenerate following tissue
loss or injury. This regeneration process is controlled by
various cytokines, growth factors and hormones.120–122 The
accumulation of type I NKT cells in the liver following partial
hepatectomy suggests that type I NKT cells may have a role in
liver regeneration. Accordingly, under inflammatory conditions
(for example, partial hepatectomy in HBV transgenic mice),
the depletion of NKT cells significantly enhances liver
regeneration.98,102 More recently, Yin et al.123 also revealed
that the activation of type I NKT cells with αGalCer strongly
inhibits liver regeneration via a mechanism that depends on
NKT-derived IFN-γ and IL-4 secretion. Similarly, the reduction
of the commensal bacterial load after oral ampicillin treatment
induces the expansion of IL-12-secreting KCs that overactivate
hepatic type I NKT cells to produce higher IFN-γ levels that
inhibit liver regeneration.124 Collectively, the activation of type
I NKT cells in inflammatory conditions appears to inhibit liver
regeneration.

FUTURE PERSPECTIVE

We have discussed many of the key aspects of NKT cell
activation and their functions in inflammatory conditions.
Most of the advances in the understanding of the roles of
NKT cell subsets in the liver have come from studies with
animal models. Experimental and clinical studies are compli-
cated by the fact that there are at least two major subsets of
CD1d-restricted NKT cells that have opposing functions and
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can be differentially activated at different time points during
the progression of the disease. Different degrees of NKT cell
activation can also lead to the secretion of a wide array of
cytokines, chemokines and other factors. Furthermore,
because NKT cells also modulate the activity of other key
immune cells, including KCs, macrophages, DCs and major
histocompatibility complex-restricted CD4+/CD8+ cells, a
molecular understanding of these cross-regulatory influ-
ences will be key for understanding how the liver is able to
maintain a proper balance between immune tolerance and
immunity. During chronic liver disease processes, the
actions of the different NKT cell subsets are inextricably
interconnected and change depending on the stage of the
disease. It will be important to develop specific reliable
reagents to identify and characterize both type I and type II
NKT cell subsets in humans, and also to carefully use
CD1d tetramers and other reagents that can differentiate
their activation in peripheral blood mononuclear cells and
liver tissues.
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