Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Short-term memory of danger signals or environmental stimuli in mesenchymal stem cells: implications for therapeutic potential

Abstract

Mesenchymal stem/stromal cells (MSCs) possess some characteristics of immune cells, including a pro-inflammatory phenotype, an immunosuppressive phenotype, antibacterial properties and the expression of Toll-like receptor proteins. Here we show that, similar to immune cells, MSCs retain information from danger signals or environmental stimuli for a period of time. When treated with the pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α), MSCs display increased expression of IL-6, IL-8 and MCP-1. Following re-plating and several rounds of cell division in the absence of stimulating factors, the expression of IL-6, IL-8 and MCP-1 remained higher than in untreated cells for over 7 days. A spike in cytokine secretion occurred when cells were exposed to a second round of stimulation. We primed MSCs with LPS and LPS-primed MSCs had better therapeutic efficacy at promoting skin flap survival in a diabetic rat model than did unprimed MSCs. Finally, we found that several microRNAs, including miR146a, miR150 and miR155, along with the modification of DNA by 5-hydroxymethylcytosine (5hmC), mediate the MSC response to LPS and TNF-α stimulation. Collectively, our data suggest that MSCs have a short-term memory of environmental signals, which may impact their therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by Toll-like receptor agonists. Stem Cells Dev 2011; 20: 695–708.

    Article  CAS  Google Scholar 

  2. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM . Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396–2402.

    Article  CAS  Google Scholar 

  3. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM . A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 2010; 5: e10088.

    Article  Google Scholar 

  4. Bernardo ME, Fibbe WE . Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13: 392–402.

    Article  CAS  Google Scholar 

  5. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.

    Article  CAS  Google Scholar 

  6. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB . Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26: 99–107.

    Article  CAS  Google Scholar 

  7. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 2007; 109: 1422–1432.

    Article  CAS  Google Scholar 

  8. Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR . Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock 2010; 33: 24–30.

    Article  CAS  Google Scholar 

  9. Khan M, Akhtar S, Mohsin S, N Khan S, Riazuddin S . Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 2011; 20: 67–75.

    Article  CAS  Google Scholar 

  10. Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 2012; 11: 812–824.

    Article  CAS  Google Scholar 

  11. Lee RH, Yoon N, Reneau JC, Prockop DJ . Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 2012; 11: 825–835.

    Article  CAS  Google Scholar 

  12. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB . Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 2010; 5: e9016.

    Article  Google Scholar 

  13. Rosova I, Dao M, Capoccia B, Link D, Nolta JA . Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008; 26: 2173–2182.

    Article  CAS  Google Scholar 

  14. Xu J, Qian J, Xie X, Lin L, Zou Y, Fu M et al. High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. Int J Mol Sci 2012; 13: 17104–17120.

    Article  CAS  Google Scholar 

  15. Mei YB, Zhou WQ, Zhang XY, Wei XJ, Feng ZC . Lipopolysaccharides shapes the human Wharton's jelly-derived mesenchymal stem cells in vitro. Cell Physiol Biochem 2013; 32: 390–401.

    Article  CAS  Google Scholar 

  16. Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS et al. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 2013; 4: 58.

    Article  CAS  Google Scholar 

  17. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109: 228–234.

    Article  CAS  Google Scholar 

  18. Jaussaud J, Biais M, Calderon J, Chevaleyre J, Duchez P, Ivanovic Z et al. Hypoxia-preconditioned mesenchymal stromal cells improve cardiac function in a swine model of chronic myocardial ischaemia. Eur J Cardiothorac Surg 2013; 43: 1050–1057.

    Article  Google Scholar 

  19. Yu X, Lu C, Liu H, Rao S, Cai J, Liu S et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013; 8: e62703.

    Article  CAS  Google Scholar 

  20. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT . Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013; 124: 165–176.

    Article  CAS  Google Scholar 

  21. Monticelli S, Natoli G . Short-term memory of danger signals and environmental stimuli in immune cells. Nat Immunol 2013; 14: 777–784.

    Article  CAS  Google Scholar 

  22. Ozturk A, Firat C, Parlakpinar H, Bay-Karabulut A, Kirimlioglu H, Gurlek A . Beneficial effects of aminoguanidine on skin flap survival in diabetic rats. Exp Diabetes Res 2012; 2012: 721256.

    Article  Google Scholar 

  23. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  Google Scholar 

  24. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189–1201.

    Article  CAS  Google Scholar 

  25. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579–1586.

    Article  CAS  Google Scholar 

  26. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut 2010; 59: 1662–1669.

    Article  Google Scholar 

  27. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–564.

    Article  CAS  Google Scholar 

  28. Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 1996; 14: 619–648.

    Article  CAS  Google Scholar 

  29. Liu N, Tian J, Cheng J, Zhang J . Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 2013; 319: 2019–2027.

    Article  CAS  Google Scholar 

  30. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W . Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.

    Article  CAS  Google Scholar 

  31. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN . Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316: 575–579.

    Article  CAS  Google Scholar 

  32. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119: 756–766.

    Article  CAS  Google Scholar 

  33. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y . Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466: 1129–1133.

    Article  CAS  Google Scholar 

  34. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013; 500: 222–226.

    Article  CAS  Google Scholar 

  35. Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  CAS  Google Scholar 

  36. van Grevenynghe J, Cubas RA, Noto A, DaFonseca S, He Z, Peretz Y et al. Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis. J Clin Invest 2011; 121: 3877–3888.

    Article  CAS  Google Scholar 

  37. Minucci S, Pelicci PG . Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38–51.

    Article  CAS  Google Scholar 

  38. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R . FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005; 10: 176–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Foundation of National Basic Research Program of China (Nos. 2010CB529903, 2010CB833600 and 2012CB518105) and the National Science Foundation of China (Nos. 81201760 and 81270894). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GY., Liu, Y., Lu, Y. et al. Short-term memory of danger signals or environmental stimuli in mesenchymal stem cells: implications for therapeutic potential. Cell Mol Immunol 13, 369–378 (2016). https://doi.org/10.1038/cmi.2015.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.11

Keywords

This article is cited by

Search

Quick links