Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NADPH oxidases: an overview from structure to innate immunity-associated pathologies

Abstract

Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Smeyne M, Smeyne RJ . Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62: 13–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 2014; 21: 2208–2217.

    CAS  PubMed  Google Scholar 

  3. Robert AM, Robert L . Xanthine oxido-reductase, free radicals and cardiovascular disease. A critical review. Pathol Oncol Res 2014; 20: 1–10.

    CAS  PubMed  Google Scholar 

  4. Deken XD, Corvilain B, Dumont JE, Miot F . Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20: 2776–2793.

    PubMed  Google Scholar 

  5. Xin G, Du J, Wang YT, Liang TT . Effect of oxidative stress on heme oxygenase-1 expression in patients with gestational diabetes mellitus. Exp Ther Med 2014; 7: 478–482.

    CAS  PubMed  Google Scholar 

  6. Franchini AM, Hunt D, Melendez JA, Drake JR . FcgammaR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288: 25098–25108.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cross AR, Segal AW . The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004; 1657: 1–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Touyz RM, Briones AM, Sedeek M, Burger D, Montezano AC . NOX isoforms and reactive oxygen species in vascular health. Mol Interv 2011; 11: 27–35.

    CAS  PubMed  Google Scholar 

  9. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 2000; 79: 155–169.

    CAS  PubMed  Google Scholar 

  10. Quie PG, White JG, Holmes B, Good RA . In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 1967; 46: 668–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmes B, Quie PG, Windhorst DB, Good RA . Fatal granulomatous disease of childhood. An inborn abnormality of phagocytic function. Lancet 1966; 1: 1225–1228.

    CAS  PubMed  Google Scholar 

  12. Bylund J, Goldblatt D, Speert DP . Chronic granulomatous disease: from genetic defect to clinical presentation. Adv Exp Med Biol 2005; 568: 67–87.

    CAS  PubMed  Google Scholar 

  13. Quinn MT, Ammons MC, Deleo FR . The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 2006; 111: 1–20.

    CAS  Google Scholar 

  14. Brandes RP, Kreuzer J . Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 2005; 65: 16–27.

    CAS  PubMed  Google Scholar 

  15. Touyz RM, Schiffrin EL . Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004; 122: 339–352.

    CAS  PubMed  Google Scholar 

  16. Moncada S, Higgs EA . The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 2006; 147( Suppl 1): S193–S201.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cifuentes ME, Pagano PJ . Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 2006; 15: 179–186.

    CAS  PubMed  Google Scholar 

  18. Wilcox CS . Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol 2005; 289: R913–R935.

    CAS  PubMed  Google Scholar 

  19. Wilcox CS . Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand 2003; 179: 217–223.

    CAS  PubMed  Google Scholar 

  20. Zou AP, Cowley AW Jr . Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand 2003; 179: 233–241.

    CAS  PubMed  Google Scholar 

  21. Juncos R, Hong NJ, Garvin JL . Differential effects of superoxide on luminal and basolateral Na+/H+ exchange in the thick ascending limb. Am J Physiol Regul Integr Comp Physiol 2006; 290: R79–R83.

    CAS  PubMed  Google Scholar 

  22. Hoidal JR, Brar SS, Sturrock AB, Sanders KA, Dinger B, Fidone S et al. The role of endogenous NADPH oxidases in airway and pulmonary vascular smooth muscle function. Antioxid Redox Signal 2003; 5: 751–758.

    CAS  PubMed  Google Scholar 

  23. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM et al. NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002; 282: L782–L795.

    CAS  PubMed  Google Scholar 

  24. Piao YJ, Seo YH, Hong F, Kim JH, Kim YJ, Kang MH et al. Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway. Free Radic Biol Med 2005; 38: 989–1001.

    CAS  PubMed  Google Scholar 

  25. Kojim S, Ikeda M, Shibukawa A, Kamikawa Y . Modification of 5-hydroxytryptophan-evoked 5-hydroxytryptamine formation of guinea pig colonic mucosa by reactive oxygen species. Jpn J Pharmacol 2002; 88: 114–118.

    PubMed  Google Scholar 

  26. Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C . NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius. J Neurosci 2004; 24: 5516–5524.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Erdos B, Broxson CS, King MA, Scarpace PJ, Tumer N . Acute pressor effect of central angiotensin II is mediated by NAD(P)H-oxidase-dependent production of superoxide in the hypothalamic cardiovascular regulatory nuclei. J Hypertens 2006; 24: 109–116.

    PubMed  Google Scholar 

  28. Mander PK, Jekabsone A, Brown GC . Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol 2006; 176: 1046–1052.

    CAS  PubMed  Google Scholar 

  29. Sbarra AJ, Karnovsky ML . The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 1959; 234: 1355–1362.

    CAS  PubMed  Google Scholar 

  30. Iyer GY, Islam MF, Quastel JH . Biochemical aspects of phagocytosis. Nature 1961; 192: 535–541.

    CAS  Google Scholar 

  31. Rossi F, Zatti M . Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 1964; 20: 21–23.

    CAS  PubMed  Google Scholar 

  32. Babior BM, Kipnes RS, Curnutte JT . Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973; 52: 741–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Segal AW, Jones OT . Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 1978; 276: 515–517.

    CAS  PubMed  Google Scholar 

  34. Segal AW, Jones OT, Webster D, Allison AC . Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet 1978; 2: 446–449.

    CAS  PubMed  Google Scholar 

  35. Teahan C, Rowe P, Parker P, Totty N, Segal AW . The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245. Nature 1987; 327: 720–721.

    CAS  PubMed  Google Scholar 

  36. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA . The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 1987; 327: 717–720.

    CAS  PubMed  Google Scholar 

  37. Nunoi H, Rotrosen D, Gallin JI, Malech HL . Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 1988; 242: 1298–1301.

    CAS  PubMed  Google Scholar 

  38. Volpp BD, Nauseef WM, Clark RA . Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 1988; 242: 1295–1297.

    CAS  PubMed  Google Scholar 

  39. Baehner RL, Gilman N, Karnovsky ML . Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest 1970; 49: 692–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Babior BM . NADPH oxidase: an update. Blood 1999; 93: 1464–1476.

    CAS  PubMed  Google Scholar 

  41. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 2002; 90: 1205–1213.

    CAS  PubMed  Google Scholar 

  42. Diebold BA, Bokoch GM . Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2001; 2: 211–215.

    CAS  PubMed  Google Scholar 

  43. Grizot S, Faure J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E . Crystal structure of the Rac1–RhoGDI complex involved in nadph oxidase activation. Biochemistry 2001; 40: 10007–10013.

    CAS  PubMed  Google Scholar 

  44. Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang Z, Stork PJ . Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem 2013; 288: 27712–27723.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Heyworth PG, Knaus UG, Settleman J, Curnutte JT, Bokoch GM . Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 1993; 4: 1217–1223.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dusi S, Donini M, Rossi F . Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox. Biochem J 1996; 314( Pt 2): 409–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Flannagan RS, Cosio G, Grinstein S . Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 2009; 7: 355–366.

    CAS  PubMed  Google Scholar 

  48. Abate C, Patel L, Rauscher FJ 3rd, Curran T . Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161.

    CAS  PubMed  Google Scholar 

  49. Borregaard N, Heiple JM, Simons ER, Clark RA . Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 1983; 97: 52–61.

    CAS  PubMed  Google Scholar 

  50. Huang J, Hitt ND, Kleinberg ME . Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry 1995; 34: 16753–16757.

    CAS  PubMed  Google Scholar 

  51. Groemping Y, Rittinger K . Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386( Pt 3): 401–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nauseef WM . Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 2004; 122: 277–291.

    CAS  PubMed  Google Scholar 

  53. Sumimoto H, Miyano K, Takeya R . Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 2005; 338: 677–686.

    CAS  PubMed  Google Scholar 

  54. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H . Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 1999; 274: 25051–25060.

    CAS  PubMed  Google Scholar 

  55. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401: 79–82.

    CAS  PubMed  Google Scholar 

  56. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 2000; 287: 138–142.

    CAS  PubMed  Google Scholar 

  57. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK . Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004; 24: 677–683.

    CAS  PubMed  Google Scholar 

  58. Balamayooran G, Batra S, Theivanthiran B, Cai S, Pacher P, Jeyaseelan S . Intrapulmonary G-CSF rescues neutrophil recruitment to the lung and neutrophil release to blood in Gram-negative bacterial infection in MCP-1−/− mice. J Immunol 2012; 189: 5849–5859.

    CAS  PubMed  Google Scholar 

  59. Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A, Breglio K et al. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 2009; 15: 997–1006.

    PubMed  Google Scholar 

  60. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000; 58: 1492–1499.

    CAS  PubMed  Google Scholar 

  61. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E et al. Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol 2005; 207: 164–176.

    CAS  PubMed  Google Scholar 

  62. Banfi B, Clark RA, Steger K, Krause KH . Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 2003; 278: 3510–3513.

    CAS  PubMed  Google Scholar 

  63. Cheng G, Lambeth JD . NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 2004; 279: 4737–4742.

    CAS  PubMed  Google Scholar 

  64. Geiszt M, Lekstrom K, Witta J, Leto TL . Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 2003; 278: 20006–20012.

    CAS  PubMed  Google Scholar 

  65. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T et al. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 2003; 278: 25234–25246.

    CAS  PubMed  Google Scholar 

  66. Ueyama T, Geiszt M, Leto TL . Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 2006; 26: 2160–2174.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kikuchi H, Hikage M, Miyashita H, Fukumoto M . NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 2000; 254: 237–243.

    CAS  PubMed  Google Scholar 

  68. Miyano K, Ueno N, Takeya R, Sumimoto H . Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 2006; 281: 21857–21868.

    CAS  PubMed  Google Scholar 

  69. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ et al. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2 . Mol Cell Biol 2004; 24: 4384–4394.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H . The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 2005; 280: 23328–23339.

    CAS  PubMed  Google Scholar 

  71. Kawahara T, Ritsick D, Cheng G, Lambeth JD . Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 2005; 280: 31859–31869.

    CAS  PubMed  Google Scholar 

  72. Cheng G, Ritsick D, Lambeth JD . Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 2004; 279: 34250–34255.

    CAS  PubMed  Google Scholar 

  73. Kiss PJ, Knisz J, Zhang Y, Baltrusaitis J, Sigmund CD, Thalmann R et al. Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol 2006; 16: 208–213.

    CAS  PubMed  Google Scholar 

  74. Geiszt M, Kopp JB, Varnai P, Leto TL . Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97: 8010–8014.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP . Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 2004; 279: 45935–45941.

    CAS  PubMed  Google Scholar 

  76. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG . Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signall 2006; 18: 69–82.

    CAS  Google Scholar 

  77. Gorin Y, Ricono JM, Kim NH, Bhandari B, Choudhury GG, Abboud HE . Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 2003; 285: F219–F229.

    CAS  PubMed  Google Scholar 

  78. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 2009; 105: 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    CAS  PubMed  Google Scholar 

  80. Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001; 276: 37594–37601.

    CAS  PubMed  Google Scholar 

  81. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD . Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001; 269: 131–140.

    CAS  PubMed  Google Scholar 

  82. Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ et al. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 2004; 279: 18583–18591.

    CAS  PubMed  Google Scholar 

  83. Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W . cAMP-response element-binding protein mediates acid-induced NADPH oxidase NOX5-S expression in Barrett esophageal adenocarcinoma cells. J Biol Chem 2006; 281: 20368–20382.

    CAS  PubMed  Google Scholar 

  84. Colas C, Ortiz de Montellano PR . Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 2003; 103: 2305–2332.

    CAS  PubMed  Google Scholar 

  85. Daiyasu H, Toh H . Molecular evolution of the myeloperoxidase family. J Mol Evol 2000; 51: 433–445.

    CAS  PubMed  Google Scholar 

  86. Nauseef WM . Contributions of myeloperoxidase to proinflammatory events: more than an antimicrobial system. Int J Hematol 2001; 74: 125–133.

    CAS  PubMed  Google Scholar 

  87. Dupuy C, Virion A, Ohayon R, Kaniewski J, Deme D, Pommier J . Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J Biol Chem 1991; 266: 3739–3743.

    CAS  PubMed  Google Scholar 

  88. De Deken X, Wang D, Dumont JE, Miot F . Characterization of ThOX proteins as components of the thyroid H2O2-generating system. Exp Cell Res 2002; 273: 187–196.

    CAS  PubMed  Google Scholar 

  89. Morand S, Chaaraoui M, Kaniewski J, Deme D, Ohayon R, Noel-Hudson MS et al. Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity and Duox2 protein expression in isolated porcine thyroid follicles. Endocrinology 2003; 144: 1241–1248.

    CAS  PubMed  Google Scholar 

  90. de Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000; 275: 23227–23233.

    CAS  PubMed  Google Scholar 

  91. Dupuy C, Ohayon R, Valent A, Noel-Hudson MS, Deme D, Virion A . Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 1999; 274: 37265–37269.

    CAS  PubMed  Google Scholar 

  92. Grasberger H, Refetoff S . Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 2006; 281: 18269–18272.

    CAS  PubMed  Google Scholar 

  93. Ameziane-El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 2005; 280: 30046–30054.

    CAS  PubMed  Google Scholar 

  94. Wang D, de Deken X, Milenkovic M, Song Y, Pirson I, Dumont JE et al. Identification of a novel partner of duox: EFP1, a thioredoxin-related protein. J Biol Chem 2005; 280: 3096–3103.

    CAS  PubMed  Google Scholar 

  95. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H et al. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 1991; 87: 352–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Freeman JL, Lambeth JD . NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem 1996; 271: 22578–22582.

    CAS  PubMed  Google Scholar 

  97. Nisimoto Y, Freeman JL, Motalebi SA, Hirshberg M, Lambeth JD . Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 1997; 272: 18834–18841.

    CAS  PubMed  Google Scholar 

  98. Cross AR, Curnutte JT . The cytosolic activating factors p47phox and p67phox have distinct roles in the regulation of electron flow in NADPH oxidase. J Biol Chem 1995; 270: 6543–6548.

    CAS  PubMed  Google Scholar 

  99. Doussiere J, Brandolin G, Derrien V, Vignais PV . Critical assessment of the presence of an NADPH binding site on neutrophil cytochrome b558 by photoaffinity and immunochemical labeling. Biochemistry 1993; 32: 8880–8887.

    CAS  PubMed  Google Scholar 

  100. Ravel P, Lederer F . Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytochrome b558 in particulate NADPH oxidase from activated human neutrophils. Biochem Biophys Res Commun 1993; 196: 543–552.

    CAS  PubMed  Google Scholar 

  101. Smith RM, Connor JA, Chen LM, Babior BM . The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase. J Clin Invest 1996; 98: 977–983.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Allen LA, DeLeo FR, Gallois A, Toyoshima S, Suzuki K, Nauseef WM . Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 1999; 93: 3521–3530.

    CAS  PubMed  Google Scholar 

  103. Koshkin V, Pick E . Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett 1993; 327: 57–62.

    CAS  PubMed  Google Scholar 

  104. Segal AW, Abo A . The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 1993; 18: 43–47.

    CAS  PubMed  Google Scholar 

  105. Morel F, Doussiere J, Vignais PV . The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 1991; 201: 523–546.

    CAS  PubMed  Google Scholar 

  106. Cross AR, Rae J, Curnutte JT . Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 1995; 270: 17075–17077.

    CAS  PubMed  Google Scholar 

  107. Doussiere J, Gaillard J, Vignais PV . Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 1996; 35: 13400–13410.

    CAS  PubMed  Google Scholar 

  108. Yu L, Zhen L, Dinauer MC . Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 1997; 272: 27288–27294.

    CAS  PubMed  Google Scholar 

  109. Leusen JH, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CI et al. Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 1996; 184: 1243–1249.

    CAS  PubMed  Google Scholar 

  110. Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT . Absence of both the 91 kD and 22 kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 1989; 73: 1416–4120.

    CAS  PubMed  Google Scholar 

  111. Cross AR . p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J 2000; 349( Pt 1): 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Etienne-Manneville S, Hall A . Rho GTPases in cell biology. Nature 2002; 420: 629–635.

    CAS  PubMed  Google Scholar 

  113. Gu Y, Jasti AC, Jansen M, Siefring JE . RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival, migration, and engraftment of hematopoietic progenitor cells. Blood 2005; 105: 1467–1475.

    CAS  PubMed  Google Scholar 

  114. Hordijk PL . Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 2006; 98: 453–462.

    CAS  PubMed  Google Scholar 

  115. Gu Y, Jia B, Yang FC, D'Souza M, Harris CE, Derrow CW et al. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 2001; 276: 15929–15938.

    CAS  PubMed  Google Scholar 

  116. Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 1999; 10: 183–196.

    CAS  PubMed  Google Scholar 

  117. Wu J, Cho MI, Kuramitsu HK . Expression, purification, and characterization of a novel G protein, SGP, from Streptococcus mutans. Infect Immun 1995; 63: 2516–2521.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Freeman JL, Abo A, Lambeth JD . Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem 1996; 271: 19794–19801.

    CAS  PubMed  Google Scholar 

  119. Dang PM, Cross AR, Quinn MT, Babior BM . Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci USA 2002; 99: 4262–4265.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dang PM, Cross AR, Babior BM . Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558. Proc Natl Acad Sci USA 2001; 98: 3001–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dang PM, Johnson JL, Babior BM . Binding of nicotinamide adenine dinucleotide phosphate to the tetratricopeptide repeat domains at the N-terminus of p67PHOX, a subunit of the leukocyte nicotinamide adenine dinucleotide phosphate oxidase. Biochemistry 2000; 39: 3069–3075.

    CAS  PubMed  Google Scholar 

  122. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 2000; 96: 1646–1654.

    CAS  PubMed  Google Scholar 

  123. Segal AW . The NADPH oxidase and chronic granulomatous disease. Mol Med Today 1996; 2: 129–135.

    CAS  PubMed  Google Scholar 

  124. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 2000; 97: 4654–4659.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamdar K, Nguyen V, DePaolo RW . Toll-like receptor signaling and regulation of intestinal immunity. Virulence 2013; 4: 207–212.

    PubMed  PubMed Central  Google Scholar 

  126. O'Neill LA, Bowie AG . The family of five: Tir-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364.

    CAS  PubMed  Google Scholar 

  127. Kawai T, Akira S . Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13: 460–469.

    CAS  PubMed  Google Scholar 

  128. Nada M, Ohnishi H, Tochio H, Kato Z, Kimura T, Kubota K et al. Molecular analysis of the binding mode of Toll/interleukin-1 receptor (TIR) domain proteins during TLR2 signaling. Mol Immunol 2012; 52: 108–116.

    CAS  PubMed  Google Scholar 

  129. Park BS, Lee JO . Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 2013; 45: e66.

    PubMed  PubMed Central  Google Scholar 

  130. Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    CAS  PubMed  Google Scholar 

  131. Harton JA, Linhoff MW, Zhang J, Ting JP . Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 2002; 169: 4088–4093.

    CAS  PubMed  Google Scholar 

  132. Ting JP, Williams KL . The CATERPILLER family: an ancient family of immune/apoptotic proteins. Clin Immunol 2005; 115: 33–37.

    CAS  PubMed  Google Scholar 

  133. Okugawa T, Kaneko T, Yoshimura A, Silverman N, Hara Y . NOD1 and NOD2 mediate sensing of periodontal pathogens. J Dent Res 2010; 89: 186–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Boyden ED, Dietrich WF . Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 2006; 38: 240–244.

    CAS  PubMed  Google Scholar 

  135. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 2006; 281: 36560–36568.

    CAS  PubMed  Google Scholar 

  136. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24: 317–327.

    CAS  PubMed  Google Scholar 

  137. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J . Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237–241.

    CAS  PubMed  Google Scholar 

  138. Martinon F, Tschopp J . Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007; 14: 10–22.

    CAS  PubMed  Google Scholar 

  139. Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB et al. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 2003; 170: 5302–5308.

    CAS  PubMed  Google Scholar 

  140. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    CAS  PubMed  Google Scholar 

  141. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS . Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 2004; 173: 3589–3593.

    CAS  PubMed  Google Scholar 

  142. Park HS, Chun JN, Jung HY, Choi C, Bae YS . Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 2006; 72: 447–455.

    CAS  PubMed  Google Scholar 

  143. Lambeth JD . Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 2002; 9: 11–17.

    PubMed  Google Scholar 

  144. Takeya R, Sumimoto H . Molecular mechanism for activation of superoxide-producing NADPH oxidases. Mol Cells 2003; 16: 271–277.

    CAS  PubMed  Google Scholar 

  145. van Maele L, Carnoy C, Cayet D, Songhet P, Dumoutier L, Ferrero I et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3negCD127+ immune cells in spleen and mucosa. J Immunol 2010; 185: 1177–1185.

    CAS  PubMed  Google Scholar 

  146. Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K et al. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 2004; 172: 3051–3058.

    CAS  PubMed  Google Scholar 

  147. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 2005; 102: 9247–9252.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4: 1247–1253.

    CAS  PubMed  Google Scholar 

  149. Joo JH, Ryu JH, Kim CH, Kim HJ, Suh MS, Kim JO et al. Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa. Antioxid Redox Signal 2012; 16: 57–70.

    CAS  PubMed  Google Scholar 

  150. Sangle GV, Zhao R, Mizuno TM, Shen GX . Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology 2010; 151: 4455–4466.

    CAS  PubMed  Google Scholar 

  151. Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V . Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 2011; 187: 613–617.

    CAS  PubMed  Google Scholar 

  152. Hamilton RF Jr, Thakur SA, Holian A . Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med 2008; 44: 1246–1258.

    CAS  PubMed  Google Scholar 

  153. Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 2009; 122( Pt 19): 3522–3530.

    CAS  PubMed  Google Scholar 

  154. Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem 2001; 47: 887–892.

    CAS  PubMed  Google Scholar 

  155. Ientile R, Curro M, Ferlazzo N, Condello S, Caccamo D, Pisani F . Homocysteine, vitamin determinants and neurological diseases. Front Biosci 2010; 2: 359–372.

    Google Scholar 

  156. Gill PS, Wilcox CS . NADPH oxidases in the kidney. Antioxid Redox Signal 2006; 8: 1597–1607.

    CAS  PubMed  Google Scholar 

  157. Zhang C, Hu JJ, Xia M, Boini KM, Brimson CA, Laperle LA et al. Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene. Free Radic Biol Med 2010; 48: 1109–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM et al. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 2013; 18: 1537–1548.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao HM, Zhou H, Hong JS . NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci 2012; 33( 6): 295–303.

    PubMed  PubMed Central  Google Scholar 

  160. Furie MB, Randolph GJ . Chemokines and tissue injury. Am J Pathol 1995; 146: 1287–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Tan JH, Ludeman JP, Wedderburn J, Canals M, Hall P, Butler SJ et al. Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1). J Biol Chem 2013; 288: 10024–10034.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Brandes RP, Viedt C, Nguyen K, Beer S, Kreuzer J, Busse R et al. Thrombin-induced MCP-1 expression involves activation of the p22phox-containing NADPH oxidase in human vascular smooth muscle cells. Thromb Haemost 2001; 85: 1104–1110.

    CAS  PubMed  Google Scholar 

  163. Chen Y, Zhang AH, Huang SM, Ding GX, Zhang WZ, Bao HY et al. NADPH oxidase-derived reactive oxygen species involved in angiotensin II-induced monocyte chemoattractant protein-1 expression in mesangial cells. Zhonghua Bing Li Xue Za Zhi 2009; 38: 456–461. Chinese.

    PubMed  Google Scholar 

  164. Cho SO, Lim JW, Kim H . Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. J Ethnopharmacol 2013; 150: 761–764.

    CAS  PubMed  Google Scholar 

  165. Snelgrove R, Williams A, Thorpe C, Hussell T . Manipulation of immunity to and pathology of respiratory infections. Expert Rev Anti Infect Ther 2004; 2: 413–426.

    CAS  PubMed  Google Scholar 

  166. Snelgrove RJ, Edwards L, Rae AJ, Hussell T . An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol 2006; 36: 1364–1373.

    CAS  PubMed  Google Scholar 

  167. Vlahos R, Stambas J, Selemidis S . Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci 2012; 33: 3–8.

    CAS  PubMed  Google Scholar 

  168. Suliman HB, Ryan LK, Bishop L, Folz RJ . Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 2001; 280: L69–L78.

    CAS  PubMed  Google Scholar 

  169. Akaike T . Role of free radicals in viral pathogenesis and mutation. Rev Med Virol 2001; 11: 87–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bureau C, Bernad J, Chaouche N, Orfila C, Beraud M, Gonindard C et al. Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 2001; 276: 23077–23083.

    CAS  PubMed  Google Scholar 

  171. de Mochel NS, Seronello S, Wang SH, Ito C, Zheng JX, Liang TJ et al. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 2010; 52: 47–59.

    PubMed  Google Scholar 

  172. Boudreau HE, Emerson SU, Korzeniowska A, Jendrysik MA, Leto TL . Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 2009; 83: 12934–12946.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lambeth JD, Kawahara T, Diebold B . Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 2007; 43: 319–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Nelson DR, Gonzalez-Peralta RP, Qian K, Xu Y, Marousis CG, Davis GL et al. Transforming growth factor-beta 1 in chronic hepatitis C. J Viral Hepatitis 1997; 4: 29–35.

    CAS  Google Scholar 

  175. Tamimi A, Serdarevic D, Hanania NA . The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 2012; 106: 319–328.

    PubMed  Google Scholar 

  176. Gu F, Wacholder S, Kovalchik S, Panagiotou OA, Reyes-Guzman C, Freedman ND et al. Time to smoke first morning cigarette and lung cancer in a case–control study. J Natl Cancer Inst 2014; 106: dju118.

    PubMed  PubMed Central  Google Scholar 

  177. Talbot S, Lin JC, Lahjouji K, Roy JP, Senecal J, Morin A et al. Cigarette smoke-induced kinin B1 receptor promotes NADPH oxidase activity in cultured human alveolar epithelial cells. Peptides 2011; 32: 1447–1456.

    CAS  PubMed  Google Scholar 

  178. Marceau F, Regoli D . Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 2004; 3: 845–852.

    CAS  PubMed  Google Scholar 

  179. Martin JG, Suzuki M, Maghni K, Pantano R, Ramos-Barbon D, Ihaku D et al. The immunomodulatory actions of prostaglandin E2 on allergic airway responses in the rat. J Immunol 2002; 169: 3963–3969.

    CAS  PubMed  Google Scholar 

  180. Lin CC, Lee IT, Yang YL, Lee CW, Kou YR, Yang CM . Induction of COX-2/PGE(2)/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: Role of TLR4-dependent NADPH oxidase activation. Free Radic Biol Med 2010; 48: 240–254.

    CAS  PubMed  Google Scholar 

  181. Noguera A, Busquets X, Sauleda J, Villaverde JM, MacNee W, Agusti AG . Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 158( 5 Pt 1): 1664–1668.

    CAS  PubMed  Google Scholar 

  182. Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W et al. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax 2001; 56: 432–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou MJ, Brown EJ . CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J Cell Biol 1994; 125: 1407–1416.

    CAS  PubMed  Google Scholar 

  184. Lowell CA, Fumagalli L, Berton G . Deficiency of Src family kinases p59/61 hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 1996; 133: 895–910.

    CAS  PubMed  Google Scholar 

  185. Liles WC, Ledbetter JA, Waltersdorph AW, Klebanoff SJ . Cross-linking of CD18 primes human neutrophils for activation of the respiratory burst in response to specific stimuli: implications for adhesion-dependent physiological responses in neutrophils. J Leuk Biol 1995; 58: 690–697.

    CAS  Google Scholar 

  186. MacNee W . Oxidants/antioxidants and chronic obstructive pulmonary disease: pathogenesis to therapy. Novartis Found Symp 2001; 234: 169–185; discussion 185–188.

    CAS  PubMed  Google Scholar 

  187. Keatings VM, Collins PD, Scott DM, Barnes PJ . Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996; 153: 530–534.

    CAS  PubMed  Google Scholar 

  188. Cross CE, van der Vliet A, O'Neill CA, Louie S, Halliwell B . Oxidants, antioxidants, and respiratory tract lining fluids. Environ Health Perspect 1994; 102( Suppl 10): 185–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yeligar SM, Harris FL, Hart CM, Brown LA . Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol 2012; 188: 3648–3657.

    CAS  PubMed  Google Scholar 

  190. Holguin F, Moss I, Brown LA, Guidot DM . Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats. J Clin Invest 1998; 101: 761–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Yeh MY, Burnham EL, Moss M, Brown LA . Chronic alcoholism alters systemic and pulmonary glutathione redox status. Am J Respir Crit Care Med 2007; 176: 270–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Szabo G . Consequences of alcohol consumption on host defence. Alcohol Alcohol 1999; 34: 830–841.

    CAS  PubMed  Google Scholar 

  193. Dushoff J, Plotkin JB, Viboud C, Earn DJ, Simonsen L . Mortality due to influenza in the United States—an annualized regression approach using multiple-cause mortality data. Am J Epidemiol 2006; 163: 181–187.

    PubMed  Google Scholar 

  194. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–5348.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Polikandriotis JA, Rupnow HL, Elms SC, Clempus RE, Campbell DJ, Sutliff RL et al. Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung. Am J Respir Cell Mol Biol 2006; 34: 314–319.

    CAS  PubMed  Google Scholar 

  196. Bechara RI, Pelaez A, Palacio A, Joshi PC, Hart CM, Brown LA et al. Angiotensin II mediates glutathione depletion, transforming growth factor-beta1 expression, and epithelial barrier dysfunction in the alcoholic rat lung. Am J Physiol Lung Cell Mol Physiol 2005; 289: L363–L370.

    CAS  PubMed  Google Scholar 

  197. de Roux A, Cavalcanti M, Marcos MA, Garcia E, Ewig S, Mensa J et al. Impact of alcohol abuse in the etiology and severity of community-acquired pneumonia. Chest 2006; 129: 1219–1225.

    PubMed  Google Scholar 

  198. Happel KI, Nelson S . Alcohol, immunosuppression, and the lung. Proc Am Thorac Soc 2005; 2: 428–432.

    CAS  PubMed  Google Scholar 

  199. Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 2000; 106: 867–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Thurman RG . II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol 1998; 275( 4 Pt 1): G605–G611.

    CAS  PubMed  Google Scholar 

  201. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG . Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 1994; 20: 453–460.

    CAS  PubMed  Google Scholar 

  202. Ma S, Yang D, Li D, Tang B, Yang Y . Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36. Lipids Health Dis 2011; 10: 53.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Touyz RM, Montezano AC . Vascular Nox4: a multifarious NADPH oxidase. Circ Res 2012; 110: 1159–1161.

    CAS  PubMed  Google Scholar 

  204. Toma L, Stancu CS, Botez GM, Sima AV, Simionescu M . Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun 2009; 390: 877–882.

    CAS  PubMed  Google Scholar 

  205. Hansson GK . Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685–1695.

    CAS  PubMed  Google Scholar 

  206. Witztum JL, Steinberg D . The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med 2001; 11: 93–102.

    CAS  PubMed  Google Scholar 

  207. Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK . Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 1985; 76: 125–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y et al. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 1999; 100: 1494–1498.

    CAS  PubMed  Google Scholar 

  209. Kunsch C, Medford RM . Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999; 85: 753–766.

    CAS  PubMed  Google Scholar 

  210. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 2002; 91: 1160–1167.

    CAS  PubMed  Google Scholar 

  211. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354–1363.

    CAS  PubMed  Google Scholar 

  212. Yan ZQ, Hansson GK . Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 2007; 219: 187–203.

    CAS  PubMed  Google Scholar 

  213. Brown MS, Goldstein JL . Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983; 52: 223–261.

    CAS  PubMed  Google Scholar 

  214. Kalayoglu MV, Byrne GI . A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide. Infect Immun 1998; 66: 5067–5072.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR . Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by Toll-like receptor agonists. Arterioscler Thromb Vasc Biol 2005; 25: 1220–1224.

    CAS  PubMed  Google Scholar 

  216. Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D . Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993; 268: 4569–4572.

    CAS  PubMed  Google Scholar 

  217. Hektoen L . The vascular changes of tuberculous meningitis, especially the tuberculous endarterities. J Exp Med 1896; 1: 112–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988; 2: 983–986.

    CAS  PubMed  Google Scholar 

  219. Hansson GK, Libby P, Schonbeck U, Yan ZQ . Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002; 91: 281–291.

    CAS  PubMed  Google Scholar 

  220. Tintut Y, Demer LL . Recent advances in multifactorial regulation of vascular calcification. Curr Opin lipidol 2001; 12: 555–560.

    CAS  PubMed  Google Scholar 

  221. Xu Q . Infections, heat shock proteins, and atherosclerosis. Curr Opin Cardiol 2003; 18: 245–252.

    PubMed  Google Scholar 

  222. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 2002; 168: 1435–1440.

    CAS  PubMed  Google Scholar 

  223. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276: 31332–31339.

    CAS  PubMed  Google Scholar 

  224. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999; 99: 2027–2033.

    CAS  PubMed  Google Scholar 

  225. Violi F, Basili S, Nigro C, Pignatelli P . Role of NADPH oxidase in atherosclerosis. Future Cardiol 2009; 5: 83–92.

    CAS  PubMed  Google Scholar 

  226. Gregg D, Rauscher FM, Goldschmidt-Clermont PJ . Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol 2003; 285: C723–C734.

    CAS  PubMed  Google Scholar 

  227. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H et al. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 2001; 59: 646–654.

    CAS  PubMed  Google Scholar 

  229. Vecchione C, Carnevale D, Di Pardo A, Gentile MT, Damato A, Cocozza G et al. Pressure-induced vascular oxidative stress is mediated through activation of integrin-linked kinase 1/betaPIX/Rac-1 pathway. Hypertension 2009; 54: 1028–1034.

    CAS  PubMed  Google Scholar 

  230. Djordjevic T, Hess J, Herkert O, Gorlach A, BelAiba RS . Rac regulates thrombin-induced tissue factor expression in pulmonary artery smooth muscle cells involving the nuclear factor-kappaB pathway. Antioxid Redox Signal 2004; 6: 713–720.

    CAS  PubMed  Google Scholar 

  231. Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M, Nickenig G . Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002; 53: 911–920.

    CAS  PubMed  Google Scholar 

  232. Mora-Pale M, Weiwer M, Yu J, Linhardt RJ, Dordick JS . Inhibition of human vascular NADPH oxidase by apocynin derived oligophenols. Bioorg Med Chem 2009; 17: 5146–5152.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Touyz RM . Apocynin, NADPH oxidase, and vascular cells: a complex matter. Hypertension 2008; 51: 172–174.

    CAS  PubMed  Google Scholar 

  234. Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ . Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 1994; 11: 95–102.

    CAS  PubMed  Google Scholar 

  235. Ghosh M, Wang HD, McNeill JR . Role of oxidative stress and nitric oxide in regulation of spontaneous tone in aorta of DOCA-salt hypertensive rats. Br J Pharmacol 2004; 141: 562–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Guzik TJ, Harrison DG . Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today 2006; 11: 524–533.

    CAS  PubMed  Google Scholar 

  237. West NE, Qian H, Guzik TJ, Black E, Cai S, George SE et al. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation 2001; 104: 1526–1532.

    CAS  PubMed  Google Scholar 

  238. Ju KD, Shin EK, Cho EJ, Yoon HB, Kim HS, Kim H et al. Ethyl pyruvate ameliorates albuminuria and glomerular injury in the animal model of diabetic nephropathy. Am J Physiol Renal Physiol 2012; 302: F606–F613.

    CAS  PubMed  Google Scholar 

  239. Fink MP . Ethyl pyruvate: a novel anti-inflammatory agent. Crit Care Med 2003; 31( 1 Suppl): S51–S56.

    CAS  PubMed  Google Scholar 

  240. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW . Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    CAS  PubMed  Google Scholar 

  241. Yao R, Cheng X, Liao YH, Chen Y, Xie JJ, Yu X et al. Molecular mechanisms of felodipine suppressing atherosclerosis in high-cholesterol-diet apolipoprotein E-knockout mice. J Cardiovasc Pharmacol 2008; 51: 188–195.

    CAS  PubMed  Google Scholar 

  242. Wang JP, Raung SL, Hsu MF, Chen CC . Inhibition by gomisin C (a lignan from Schizandra chinensis) of the respiratory burst of rat neutrophils. Br J Pharmacol 1994; 113: 945–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Gupte SA . Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases. Curr Opin Invest Drugs 2008; 9: 993–1000.

    CAS  Google Scholar 

  244. Gupte SA, Kaminski PM, Floyd B, Agarwal R, Ali N, Ahmad M et al. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Am J Physiol Heart Circ Physiol 2005; 288: H13–H21.

    CAS  PubMed  Google Scholar 

  245. Yagi K . Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 1998; 108: 107–110.

    CAS  PubMed  Google Scholar 

  246. Lassegue B, Clempus RE . Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285: R277–R297.

    CAS  PubMed  Google Scholar 

  247. Akard LP, English D, Gabig TG . Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst. Blood 1988; 72: 322–327.

    CAS  PubMed  Google Scholar 

  248. Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD . Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009; 11: 2535–2552.

    CAS  PubMed  Google Scholar 

  249. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK . The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol 2003; 475: 19–27.

    CAS  PubMed  Google Scholar 

  250. Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH . Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 2005; 57: 111–116.

    CAS  PubMed  Google Scholar 

  251. Nakashima T, Iwashita T, Fujita T, Sato E, Niwano Y, Kohno M et al. A prodigiosin analogue inactivates NADPH oxidase in macrophage cells by inhibiting assembly of p47phox and Rac. J Biochem 2008; 143: 107–115.

    CAS  PubMed  Google Scholar 

  252. ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 2006; 71: 331–341.

    CAS  PubMed  Google Scholar 

  253. Wind S, Beuerlein K, Armitage ME, Taye A, Kumar AH, Janowitz D et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 2010; 56: 490–497.

    CAS  PubMed  Google Scholar 

  254. Laleu B, Gaggini F, Orchard M, Fioraso-Cartier L, Cagnon L, Houngninou-Molango S et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 2010; 53: 7715–7730.

    CAS  PubMed  Google Scholar 

  255. Drummond GR, Selemidis S, Griendling KK, Sobey CG . Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10: 453–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Dahan I, Pick E . Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “all that you did and did not want to know about Nox inhibitory peptides”. Cell Mol Life Sci 2012; 69: 2283–2305.

    CAS  PubMed  Google Scholar 

  257. Maupetit J, Derreumaux P, Tuffery P . A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 2010; 31: 726–738.

    CAS  PubMed  Google Scholar 

  258. DeLeo FR, Yu L, Burritt JB, Loetterle LR, Bond CW, Jesaitis AJ et al. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA 1995; 92: 7110–7114.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Kleinberg ME, Malech HL, Rotrosen D . The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 1990; 265: 15577–15583.

    CAS  PubMed  Google Scholar 

  260. DeLeo FR, Jutila MA, Quinn MT . Characterization of peptide diffusion into electropermeabilized neutrophils. J Immunol Methods 1996; 198: 35–49.

    CAS  PubMed  Google Scholar 

  261. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ . Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2 and systolic blood pressure in mice. Circ Res 2001; 89: 408–414.

    CAS  PubMed  Google Scholar 

  262. Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y et al. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA 1994; 91: 5345–5349.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, Butcher C et al. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 1994; 269: 13752–13755.

    CAS  PubMed  Google Scholar 

  264. McPhail LC . SH3-dependent assembly of the phagocyte NADPH oxidase. J Exp Med 1994; 180: 2011–2015.

    CAS  PubMed  Google Scholar 

  265. Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR . NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 2008; 120: 254–291.

    CAS  PubMed  Google Scholar 

  266. Ellis JA, Mayer SJ, Jones OT . The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J 1988; 251: 887–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Bayraktutan U, Draper N, Lang D, Shah AM . Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 1998; 38: 256–262.

    CAS  PubMed  Google Scholar 

  268. Pandey D, Chen F, Patel A, Wang CY, Dimitropoulou C, Patel VS et al. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arterioscler Thromb Vasc Biol 2011; 31: 1634–1642.

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T . Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72: 3373–3382.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E . Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 1997; 272: 13292–13301.

    CAS  PubMed  Google Scholar 

  271. Aharoni I, Pick E . Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leuk Biol 1990; 48: 107–115.

    CAS  Google Scholar 

  272. Bohle A, Bader R, Grund KE, Mackensen S, Neunhoeffer J . Serum creatinine concentration and renal interstitial volume. Analysis of correlations in endocapillary (acute) glomerulonephritis and in moderately severe mesangioproliferative glomerulonephritis. Virchows Arch A Pathol Anat Histol 1977; 375: 87–96.

    CAS  PubMed  Google Scholar 

  273. Chakraborti S, Roy S, Mandal A, Chowdhury A, Chakraborti T . Role of PKC-zeta in NADPH oxidase–PKCalpha–Gialpha axis dependent inhibition of beta-adrenergic response by U46619 in pulmonary artery smooth muscle cells. Arch Biochem Biophys 2013; 540: 133–144.

    CAS  PubMed  Google Scholar 

  274. Hoff P, Buttgereit F . NADPH oxidase 4 represents a potential target for the treatment of osteoporosis. Cell Mol Immunol 2014; 11: 317–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Batra S, Cai S, Balamayooran G, Jeyaseelan S . Intrapulmonary administration of leukotriene B4 augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice. J Immunol 2012; 188: 3458–3468.

    CAS  PubMed  Google Scholar 

  276. Theivanthiran B, Batra S, Balamayooran G, Cai S, Kobayashi K, Flavell RA et al. NOD2 signaling contributes to host defense in the lungs against Escherichia coli infection. Infect Immun 2012; 80: 2558–2569.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996; 93: 2448–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Harper RW, Xu C, Eiserich JP, Chen Y, Kao CY, Thai P et al. Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 2005; 579: 4911–4917.

    CAS  PubMed  Google Scholar 

  279. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 2001; 154: 879–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V et al. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 2005; 288: G933–G942.

    CAS  PubMed  Google Scholar 

  281. Wu Y, Antony S, Juhasz A, Lu J, Ge Y, Jiang G et al. Up-regulation and sustained activation of Stat1 are essential for interferon-gamma (IFN-gamma)-induced dual oxidase 2 (Duox2) and dual oxidase A2 (DuoxA2) expression in human pancreatic cancer cell lines. J Biol Chem 2011; 286: 12245–12256.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Harper RW, Xu C, McManus M, Heidersbach A, Eiserich JP . Duox2 exhibits potent heme peroxidase activity in human respiratory tract epithelium. FEBS Lett 2006; 580: 5150–5154.

    CAS  PubMed  Google Scholar 

  283. Yoshizawa-Ogasawara A, Ogikubo S, Satoh M, Narumi S, Hasegawa T . Congenital hypothyroidism caused by a novel mutation of the dual oxidase 2 (DUOX2) gene. J Pediatr Endocrinol Metab 2013; 26: 45–52.

    CAS  PubMed  Google Scholar 

  284. Feng D, Yang C, Geurts AM, Kurth T, Liang M, Lazar J et al. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab 2012; 15: 201–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Clark RA, Volpp BD, Leidal KG, Nauseef WM . Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 1990; 85: 714–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Wientjes FB, Hsuan JJ, Totty NF, Segal AW . p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 1993; 296( Pt 3): 557–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW . Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 1991; 353: 668–670.

    CAS  PubMed  Google Scholar 

  288. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    CAS  PubMed  Google Scholar 

  289. Wolpe SD, Davatelis G, Sherry B, Beutler B, Hesse DG, Nguyen HT et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 1988; 167: 570–581.

    CAS  PubMed  Google Scholar 

  290. Mandrekar P, Ambade A, Lim A, Szabo G, Catalano D . An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 2011; 54: 2185–2197.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from the Flight Attendant Medical Research Award YCSA-123253, the National Institutes of Health (grant R15-1R15ES023151-01) and a SVM Corp LAV-3383 grant to SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Batra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panday, A., Sahoo, M., Osorio, D. et al. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12, 5–23 (2015). https://doi.org/10.1038/cmi.2014.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.89

Keywords

This article is cited by

Search

Quick links