Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages

Abstract

FAM19A4 is an abbreviation for family with sequence similarity 19 (chemokine (C–C motif)-like) member A4, which is a secretory protein expressed in low levels in normal tissues. The biological functions of FAM19A4 remain to be determined, and its potential receptor(s) is unclarified. In this study, we demonstrated that FAM19A4 was a classical secretory protein and we verified for the first time that its mature protein is composed of 95 amino acids. We found that the expression of this novel cytokine was upregulated in lipopolysaccharide (LPS)-stimulated monocytes and macrophages and was typically in polarized M1. FAM19A4 shows chemotactic activities on macrophages and enhances the macrophage phagocytosis of zymosan both in vitro and in vivo with noticeable increases of the phosphorylation of protein kinase B (Akt). FAM19A4 can also increase the release of reactive oxygen species (ROS) upon zymosan stimulation. Furthermore, based on receptor internalization, radio ligand binding assays and receptor blockage, we demonstrated for the first time that FAM19A4 is a novel ligand of formyl peptide receptor 1 (FPR1). The above data indicate that upon inflammatory stimulation, monocyte/macrophage-derived FAM19A4 may play a crucial role in the migration and activation of macrophages during pathogenic infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bezbradica JS, Medzhitov R . Integration of cytokine and heterologous receptor signaling pathways. Nat Immunol 2009; 10: 333–339.

    Article  CAS  PubMed  Google Scholar 

  2. Kono H, Rock KL . How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8: 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40: 274–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wevers BA, Kaptein TM, Zijlstra-Willems EM, Theelen B, Boekhout T, Geijtenbeek TB et al. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 2014; 15: 494–505.

    Article  CAS  PubMed  Google Scholar 

  5. Munder M, Mallo M, Eichmann K, Modolell M . Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 1998; 187: 2103–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rothfuchs AG, Gigliotti D, Palmblad K, Andersson U, Wigzell H, Rottenberg ME . IFN-alpha beta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. J Immunol 2001; 167: 6453–6461.

    Article  CAS  PubMed  Google Scholar 

  7. Le Y, Murphy PM, Wang JM . Formyl-peptide receptors revisited. Trends Immunol 2002; 23: 541–548.

    Article  CAS  PubMed  Google Scholar 

  8. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep 2012; 2: 786.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2013; 123: 443–454.

    Article  CAS  PubMed  Google Scholar 

  10. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 2013; 65: 967–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61: 119–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galluzzi L, Kepp O, Kroemer G . Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13: 780–788.

    Article  CAS  PubMed  Google Scholar 

  13. Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y et al. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int Immunopharmacol 2012; 14: 283–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brenner C, Galluzzi L, Kepp O, Kroemer G . Decoding cell death signals in liver inflammation. J Hepatol 2013; 59: 583–594.

    Article  CAS  PubMed  Google Scholar 

  15. Tom TY, Emtage P, Funk WD, Hu T, Arterburn M, Park EE et al. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain. Genomics 2004; 83: 727–734.

    Article  Google Scholar 

  16. Guo X, Zhang Y, Wang P, Li T, Fu W, Mo X et al. VSTM1-v2, a novel soluble glycoprotein, promotes the differentiation and activation of Th17 cells. Cell Immunol 2012; 278: 136–142.

    Article  CAS  PubMed  Google Scholar 

  17. Pei X, Sun Q, Zhang Y, Wang P, Peng X, Guo C et al. PC3-secreted microprotein is a novel chemoattractant protein and functions as a high-affinity ligand for CC chemokine receptor 2. J Immunol 2014; 192: 1878–1886.

    Article  CAS  PubMed  Google Scholar 

  18. Locati M, Mantovani A, Sica A . Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163–184.

    Article  CAS  PubMed  Google Scholar 

  19. Galli SJ, Borregaard N, Wynn TA . Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011; 12: 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flannagan RS, Jaumouille V, Grinstein S . The cell biology of phagocytosis. Annu Rev Pathol 2012; 7: 61–98.

    Article  CAS  PubMed  Google Scholar 

  21. Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R et al. Inhibitor hijacking of Akt activation. Nat Chem Biol 2009; 5: 484–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gemperle C, Schmid M, Herova M, Marti-Jaun J, Wuest SJ, Loretz C et al. Regulation of the formyl peptide receptor 1 (FPR1) gene in primary human macrophages. PLoS One 2012; 7: e50195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yousefi S, Cooper PR, Potter SL, Mueck B, Jarai G . Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol 2001; 69: 1045–1052.

    CAS  PubMed  Google Scholar 

  24. Stenfeldt AL, Karlsson J, Wenneras C, Bylund J, Fu H, Dahlgren C . Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation 2007; 30: 224–229.

    Article  CAS  PubMed  Google Scholar 

  25. Partida-Sanchez S, Iribarren P, Moreno-Garcia ME, Gao JL, Murphy PM, Oppenheimer N et al. Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose. J Immunol 2004; 172: 1896–906.

    Article  CAS  PubMed  Google Scholar 

  26. John CD, Sahni V, Mehet D, Morris JF, Christian HC, Perretti M et al. Formyl peptide receptors and the regulation of ACTH secretion: targets for annexin A1, lipoxins, and bacterial peptides. FASEB J 2007; 21: 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  27. Fay SP, Posner RG, Swann WN, Sklar LA . Real-time analysis of the assembly of ligand, receptor, and G protein by quantitative fluorescence flow cytometry. Biochemistry 1991; 30: 5066–5075.

    Article  CAS  PubMed  Google Scholar 

  28. Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 2002; 8: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hauser CJ, Sursal T, Rodriguez EK, Appleton PT, Zhang Q, Itagaki K . Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase. J Orthop Trauma 2010; 24: 534–538.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raoof M, Zhang Q, Itagaki K, Hauser CJ . Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma 2010; 68: 1328–1332, 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464: 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U . An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J Immunol 2004; 172: 7669–7676.

    Article  CAS  PubMed  Google Scholar 

  33. Schepetkin IA, Khlebnikov AI, Giovannoni MP, Kirpotina LN, Cilibrizzi A, Quinn MT . Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition. Curr Med Chem 2014; 21: 1478–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Molloy MJ, Grainger JR, Bouladoux N, Hand TW, Koo LY, Naik S et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe 2013; 14: 318–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moussion C, Ortega N, Girard JP . The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 2008; 3: e3331.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cohen I, Rider P, Carmi Y, Braiman A, Dotan S, White MR et al. Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci USA 2010; 107: 2574–2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbier M, Faille D, Loriod B, Textoris J, Camus C, Puthier D et al. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria. PLoS One 2011; 6: e19651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delfini MC, Mantilleri A, Gaillard S, Hao J, Reynders A, Malapert P et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 2013; 5: 378–388.

    Article  CAS  PubMed  Google Scholar 

  39. Becker EL, Forouhar FA, Grunnet ML, Boulay F, Tardif M, Bormann BJ et al. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res 1998; 292: 129–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Philip M Murphy from the Laboratory of Molecular Immunology, National Institutes of Health for providing the plasmid pCMV-FPR1. We also thank Li Yan, PhD, of the Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London for his contributions to the statistical analyses in this work. This work was supported by grants from the National Natural Science Foundation of China (81273233) and the Peking University–National Taiwan University Cooperation Fund (BMU20120316).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, T., Wang, X. et al. FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages. Cell Mol Immunol 12, 615–624 (2015). https://doi.org/10.1038/cmi.2014.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.61

Keywords

This article is cited by

Search

Quick links