Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TH17 cells in human recurrent pregnancy loss and pre-eclampsia

Abstract

T helper 17 (TH17) cells have been identified as a new lineage of helper T cells and have been shown to be important in host defense against extracellular infectious agents, autoimmune disease and chronic inflammatory diseases. Recently, TH17 cells have also been shown to participate in successful pregnancy, as well as in the pathogenesis of diseases of pregnancy, such as recurrent spontaneous abortion (RSA) and pre-eclampsia (PE). Here, we review our current knowledge of TH17 cells in human RSA and PE. We also discuss how the local uterine microenvironment affects the differentiation of TH17 cells and the mechanisms that regulate TH17 cells during pregnancy. Research into TH17 cells will not only advance our understanding of TH17-related pregnancy complications, but will also facilitate the design of novel therapies for reproductive diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Dong C . T-H 17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8: 337–348.

    Article  CAS  PubMed  Google Scholar 

  2. Ouyang WJ, Kolls JK, Zheng Y . The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28: 454–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki G, Umemura M . Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol 2007; 51: 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  5. Kolls JK, Khader SA . The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev 2010; 21: 443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saito S, Nakashima A, Ito M, Shima T . Clinical implication of recent advances in our understanding of IL-17 and reproductive immunology. Expert Rev Clin Immunol 2011; 7: 649–657.

    Article  CAS  PubMed  Google Scholar 

  7. Kolls JK, Khader SA . The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev 2010; 21: 443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    Article  CAS  PubMed  Google Scholar 

  9. Cua DJ, Tato CM . Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010; 10: 479–489.

    Article  CAS  PubMed  Google Scholar 

  10. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 2014; 20: 54–61.

    Article  CAS  PubMed  Google Scholar 

  11. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S . Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 2013; 190: 521–525.

    Article  CAS  PubMed  Google Scholar 

  12. Lee SK, Kim JY, Lee M, Gilman-Sachs A, Kwak-Kim J . Th17 and regulatory T cells in women with recurrent pregnancy loss. Am J Reprod Immunol 2012; 67: 311–318.

    Article  CAS  PubMed  Google Scholar 

  13. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2011; 65: 503–511.

    Article  CAS  PubMed  Google Scholar 

  14. Wang WJ, Hao CF, Lin Y, Yin GJ, Bao SH, Qiu LH et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol 2010; 84: 164–170.

    Article  CAS  PubMed  Google Scholar 

  15. Toldi G, Rigo J, Stenczer B, Vasarhelyi B, Molvarec A . Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol 2011; 66: 223–229.

    Article  CAS  PubMed  Google Scholar 

  16. Saito S . Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol Cell Biol 2010; 88: 615–617.

    Article  CAS  PubMed  Google Scholar 

  17. Saito S, Nakashima A, Shima T, Ito M . Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 2010; 63: 601–610.

    Article  CAS  PubMed  Google Scholar 

  18. Wegmann TG, Lin H, Guilbert L, Mosmann TR . Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 1993; 14: 353–356.

    Article  CAS  PubMed  Google Scholar 

  19. Vince GS, Johnson PM . Is there a Th2 bias in human pregnancy? J Reprod Immunol 1996; 32: 101–104.

    Article  CAS  PubMed  Google Scholar 

  20. Raghupathy R . Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Semin Immunol 2001; 13: 219–227.

    Article  CAS  PubMed  Google Scholar 

  21. Fallon PG, Jolin HE, Smith P, Emson CL, Townsend MJ, Fallon R et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 2002; 17: 7–17.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JH, Chen ZL, Smith GN, Croy BA . Natural killer cell-triggered vascular transformation: maternal care before birth? Cell Mol Immunol 2011; 8: 1–11.

    Article  PubMed  CAS  Google Scholar 

  23. Ashkar AA, Di Santo JP, Croy BA . Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med 2000; 192: 259–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sargent IL, Borzychowski AM, Redman CW . NK cells and human pregnancy—an inflammatory view. Trends Immunol 2006; 27: 399–404.

    Article  CAS  PubMed  Google Scholar 

  25. Nakashima A, Ito M, Yoneda S, Shiozaki A, Hidaka T, Saito S . Circulating and decidual Th17 cell levels in healthy pregnancy. Am J Reprod Immunol 2010; 63: 104–109.

    Article  CAS  PubMed  Google Scholar 

  26. Ito M, Nakashima A, Hidaka T, Okabe M, Bac ND, Ina S et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J Reprod Immunol 2010; 84: 75–85.

    Article  CAS  PubMed  Google Scholar 

  27. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 2009; 183: 7023–7030.

    Article  CAS  PubMed  Google Scholar 

  28. Ostojic S, Dubanchet S, Chaouat G, Abdelkarim M, Truyens C, Capron F . Demonstration of the presence of IL-16 IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. Am J Reprod Immunol 2003; 49: 101–112.

    Article  CAS  PubMed  Google Scholar 

  29. Pongcharoen S, Niumsup P, Sanguansermsri D, Supalap K, Butkhamchot P . The effect of interleukin-17 on the proliferation and invasion of JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2006; 55: 291–300.

    Article  CAS  PubMed  Google Scholar 

  30. Pongcharoen S, Supalap K . Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2009; 61: 261–264.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez-Garcia EA, Chávez-Robles B, Sánchez-Hernández PE, Núñez-Atahualpa L, Martín-Máquez BT, Muñoz-Gómez A et al. IL-17 increased in the third trimester in healthy women with term labor. Am J Reprod Immunol 2011; 65: 99–103.

    Article  CAS  PubMed  Google Scholar 

  32. Heidt S, Segundo DS, Chadha R, Wood KJ . The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr Opin Organ Transpl 2010; 15: 456–461.

    Article  Google Scholar 

  33. Hanidziar D, Koulmanda M . Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr Opin Organ Transpl 2010; 15: 411–415.

    Article  Google Scholar 

  34. Yoshida S, Haque A, Mizobuchi T, Iwata T, Chiyo M, Webb TJ et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant 2006; 6: 724–735.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S . Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004; 10: 347–353.

    Article  CAS  PubMed  Google Scholar 

  36. Yang H, Qiu L, Chen G, Ye Z, Lü C, Lin Q . Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril 2008; 89: 656–661.

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Dehghani B, Li Y, Kaler LJ, Vandenbark AA, Offner H . Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 2009; 126: 329–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ochanuna Z, Geiger-Maor A, Dembinsky-Vaknin A, Karussis D, Tykocinski ML, Rachmilewitz J . Inhibition of effector function but not T cell activation and increase in FoxP3 expression in T cells differentiated in the presence of PP14. PLoS ONE 2010; 5: e12868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Redman CW, Jefferies M . Revised definition of pre-eclampsia. Lancet 1988; 1: 809–812.

    Article  CAS  PubMed  Google Scholar 

  40. Redman CW, Sargent IL . Latest advances in understanding preeclampsia. Science 2005; 308: 1592–1594.

    Article  CAS  PubMed  Google Scholar 

  41. Laresgoiti-Servitje E . A leading role for the immune system in the pathophysiology of preeclampsia. J Leuk Biol 2013; 94: 247–257.

    Article  CAS  Google Scholar 

  42. Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH . Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med 2014; 211: 165–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou JJ, Hu YL, Wang ZQ, Zheng MM, Zhao X . Imbalance of T-cell transcription factors contributes to the Th1 type immunity predominant in pre-eclampsia. Am J Reprod Immunol 2010; 63: 38–45.

    CAS  Google Scholar 

  44. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005.

    Article  CAS  PubMed  Google Scholar 

  45. Saito S, Sakai M . Th1/Th2 balance in preeclampsia. J Reprod Immunol 2003; 59: 161–173.

    Article  CAS  PubMed  Google Scholar 

  46. Saito S Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T . Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1: Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 1999; 117: 550–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238.

    Article  CAS  PubMed  Google Scholar 

  48. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 2006; 441: 231–234.

    Article  CAS  PubMed  Google Scholar 

  49. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC . A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203: 1685–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B . TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24: 179–189.

    Article  CAS  PubMed  Google Scholar 

  51. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010; 33: 279–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009; 10: 314–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496: 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007; 282: 9358–9363.

    Article  CAS  PubMed  Google Scholar 

  55. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28: 29–39.

    Article  CAS  PubMed  Google Scholar 

  56. Brustle A, Heink S, Huber M, Rosenplänter C, Stadelmann C, Yu P et al. The development of inflammatory T-H-17 cells requires interferon-regulatory factor 4. Nat Immunol 2007; 8: 958–966.

    Article  PubMed  CAS  Google Scholar 

  57. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008; 453: 65–71.

    Article  CAS  PubMed  Google Scholar 

  58. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453: 106–109.

    Article  CAS  PubMed  Google Scholar 

  59. Sacks GP, Studena K, Sargent IL, Redman CW . Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80–86.

    Article  CAS  PubMed  Google Scholar 

  60. Smarason AK, Gunnarsson A, Alfredsson JH, Valdimarsson H . Monocytosis and monocytic infiltration of decidua in early-pregnancy. J Clin Lab Immunol 1986; 21: 1–5.

    CAS  PubMed  Google Scholar 

  61. Sacks GP, Redman CW, Sargent IL . Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol 2003; 131: 490–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koumandakis E, Koumandaki I, Kaklamani E, Sparos L, Aravantinos D, Trichopoulos D . Enhanced phagocytosis of mononuclear phagocytes in pregnancy. Br J Obstet Gynaecol 1986; 93: 1150–1154.

    Article  CAS  PubMed  Google Scholar 

  63. Austgulen R, Lien E, Liabakk NB, Jacobsen G, Arntzen KJ . Increased levels of cytokines and cytokine activity modifiers in normal-pregnancy. Eur J Obstetr Gynecol Reprod Biol 1994; 57: 149–155.

    Article  CAS  Google Scholar 

  64. Melczer Z, Bánhidy F, Csömör S, Tóth P, Kovács M, Winkler G et al. Influence of leptin and the TNF system on insulin resistance in pregnancy and their effect on anthropometric parameters of newborns. Acta Obstet Gyn Scan 2003; 82: 432–438.

    Article  Google Scholar 

  65. Sacks GP, Seyani L, Lavery S, Trew G . Maternal C-reactive protein levels are raised at 4 weeks gestation. Hum Reprod 2004; 19: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  66. Knight M, Redman CW, Linton EA, Sargent IL . Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 1998; 105: 632–640.

    Article  CAS  PubMed  Google Scholar 

  67. Hahn S, Huppertz B, Holzgreve W . Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta 2005; 26: 515–526.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta AK, Rusterholz C, Huppertz B, Malek A, Schneider H, Holzgreve W et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta 2005; 26: 59–66.

    Article  CAS  PubMed  Google Scholar 

  69. Collins MK, Tay CS, Erlebacher A . Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest 2009; 119: 2062–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fu BQ, Li X, Sun R, Tong X, Ling B, Tian Z et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal–fetal interface. Proc Natl Acad Sci USA 2013; 110: E231–E240.

    CAS  PubMed  Google Scholar 

  71. Wu W, Shi S, Ljunggren HG, Cava AL, Van Kaer L, Shi FD et al. NK cells inhibit T-bet-deficient, autoreactive Th17 cells. Scand J Immunol 2012; 76: 559–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hao JW, Liu R, Piao W, Zhou Q, Vollmer TL, Campagnolo DI et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med 2010; 207: 1907–1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu W, Fazekas G, Hara H, Tabira T . Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 163: 24–30.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang BN, Yamamura T, Kondo T, Fujiwara M, Tabira T . Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 1997; 186: 1677–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu BQ, Wang F, Sun R, Ling B, Tian Z, Wei H . CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology 2011; 133: 350–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 2006; 12: 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  77. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M et al. TH17 cell differentiation is regulated by the circadian clock. Science 2013; 342: 727–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LA . Circadian clock proteins and immunity. Immunity 2014; 40: 178–186.

    Article  CAS  PubMed  Google Scholar 

  79. Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ et al. Differential requirement for Nfil3 during NK cell development. J Immunol 2014; 192: 2667–2675.

    Article  CAS  PubMed  Google Scholar 

  80. Wang WJ, Hao CF, Qu QL, Wang X, Qiu LH, Lin QD The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum Reprod 2010; 25: 2591–2596.

    Article  CAS  PubMed  Google Scholar 

  81. Stewart CA, Metheny H, Iida N, Smith L, Hanson M, Steinhagen F et al. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 2013; 123: 4859–4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY . Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010; 463: 808–8120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huber S, Gagliani N, Esplugues E, O'Connor W Jr, Huber FJ, Chaudhry A et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3− and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 2011; 34: 554–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I . Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008; 112: 2340–2352.

    Article  CAS  PubMed  Google Scholar 

  85. Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 2009; 183: 2475–2483.

    Article  CAS  PubMed  Google Scholar 

  86. Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci USA 2010; 107: 11918–11923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Honig A, Rieger L, Kapp M, Sütterlin M, Dietl J, Kämmerer U . Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol 2014; 61: 79–86.

    Article  CAS  Google Scholar 

  88. Cooney LA, Towery K, Endres J, Fox DA . Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol 2011; 187: 4440–4450.

    Article  CAS  PubMed  Google Scholar 

  89. Diveu C, McGeachy MJ, Boniface K, Stumhofer JS, Sathe M, Joyce-Shaikh B et al. IL-27 Blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 2009; 182: 5748–5756.

    Article  CAS  PubMed  Google Scholar 

  90. Hirahara K, Ghoreschi K, Yang XP, Takahashi H, Laurence A, Vahedi G et al. Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. Immunity 2012; 36: 1017–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. El-Behi M, Ciric B, Yu S, Zhang GX, Fitzgerald DC, Rostami A . Differential effect of IL-27 on developing versus committed Th17 cells. J Immunol 2009; 183: 4957–4967.

    Article  CAS  PubMed  Google Scholar 

  92. Ramesh R, Kozhaya L, McKevitt K, Djuretic IM, Carlson TJ, Quintero MA et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 2014; 211: 89–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012; 13: 991–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fu BQ, Tian ZG, Wei HM . Subsets of human natural killer cells and their regulatory effects. Immunology 2014; 141: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely apologize to colleagues whose work could not be adequately discussed or cited due to the brevity of this review. Our work is supported by the Natural Science Foundation of China Grants 81202367 and 81330071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binqing Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, B., Tian, Z. & Wei, H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol 11, 564–570 (2014). https://doi.org/10.1038/cmi.2014.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.54

Keywords

This article is cited by

Search

Quick links