Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs, immune cells and pregnancy

Abstract

MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that are expressed in many cell types, where they regulate the expression of complementary RNAs, thus modulating the stability and translation of mRNAs. miRNAs are predicted to regulate the expression of 50% of all protein coding genes in mammals. Therefore, they participate in virtually all cellular processes investigated so far. Altered miRNAs expressions are associated with both physiological (pregnancy) and pathological processes (cancer). As the dynamic maternal-fetal interface plays a critical role in the maintenance of successful pregnancy, it is not surprising that the miRNAs that are unique to reproductive tissues are abundantly expressed. Research in this field has demonstrated the presence and dysregulation of a distinct set of pregnancy-associated miRNAs; however, most studies have centered on localizing various miRNAs in reproductive microdomains associated with normal or complicated pregnancies. Although several independent miRNA regulatory mechanisms associated with endometrial receptivity, immune cells, angiogenesis and placental development have been studied, miRNA-mediated regulation of pregnancy remains poorly understood. This review provides a summary of the current data on miRNA regulation as well as functional profiles of miRNAs that are found in the uterus, in immune cells associated with maternal tolerance to the fetus, and those involved in angiogenesis and placental development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D . Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111–122.

    CAS  PubMed  Google Scholar 

  3. Chen CZ, Schaffert S, Fragoso R, Loh C . Regulation of immune responses and tolerance: the microRNA perspective. Immunol Rev 2013; 253: 112–128.

    PubMed  PubMed Central  Google Scholar 

  4. Carissimi C, Fulci V, Macino G . MicroRNAs: novel regulators of immunity. Autoimmun Rev 2009; 8: 520–524.

    CAS  PubMed  Google Scholar 

  5. Xiao C, Rajewsky K . MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26–36.

    CAS  PubMed  Google Scholar 

  6. Morales Prieto DM, Markert UR . MicroRNAs in pregnancy. J Reprod Immunol 2011; 88: 106–111.

    PubMed  Google Scholar 

  7. Krol J, Loedige I, Filipowicz W . The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597–610.

    CAS  PubMed  Google Scholar 

  8. Chen K, Rajewsky N . The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103.

    CAS  PubMed  Google Scholar 

  9. Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B et al. MicroRNA expression profiles of trophoblastic cells. Placenta 2012; 33: 725–734.

    CAS  PubMed  Google Scholar 

  10. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR . Pregnancy-associated miRNA-clusters. J Reprod Immunol 2013; 97: 51–61.

    CAS  PubMed  Google Scholar 

  11. Gu Y, Sun J, Groome LJ, Wang Y . Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab 2013; 304: E836–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Erlebacher A . Immunology of the maternal–fetal interface. Annu Rev Immunol 2013; 31: 387–411.

    CAS  PubMed  Google Scholar 

  13. Moffett A, Loke C . Immunology of placentation in eutherian mammals. Nat Rev Immunol 2006; 6: 584–594.

    CAS  PubMed  Google Scholar 

  14. Moffett-King A . Natural killer cells and pregnancy. Nat Rev Immunol 2002; 2: 656–663.

    CAS  PubMed  Google Scholar 

  15. Riley JK, Yokoyama WM . NK cell tolerance and the maternal–fetal interface. Am J Reprod Immunol 2008; 59: 371–387.

    PubMed  Google Scholar 

  16. Kalkunte S, Chichester CO, Gotsch F, Sentman CL, Romero R, Sharma S . Evolution of non-cytotoxic uterine natural killer cells. Am J Reprod Immunol 2008; 59: 425–432.

    PubMed  PubMed Central  Google Scholar 

  17. Pollard JW . Uterine DCs are essential for pregnancy. J Clin Invest 2008; 118: 3832–3835.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins MK, Tay CS, Erlebacher A . Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest 2009; 119: 2062–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Barrientos G, Tirado-Gonzalez I, Klapp BF, Karimi K, Arck PC, Garcia MG et al. The impact of dendritic cells on angiogenic responses at the fetal–maternal interface. J Reprod Immunol 2009; 83: 85–94.

    CAS  PubMed  Google Scholar 

  20. Le Bouteiller P, Piccinni MP . Human NK cells in pregnant uterus: why there? Am J Reprod Immunol 2008; 59: 401–406.

    CAS  PubMed  Google Scholar 

  21. Chaouat G, Ledee-Bataille N, Dubanchet S . Immune cells in uteroplacental tissues throughout pregnancy: a brief review. Reprod Biomed Online 2007; 14: 256–266.

    CAS  PubMed  Google Scholar 

  22. Fernekorn U, Kruse A . Regulation of leukocyte recruitment to the murine maternal/fetal interface. Chem Immunol Allergy 2005; 89: 105–117.

    CAS  PubMed  Google Scholar 

  23. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A . Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal–fetal interface. Science 2012; 336: 1317–1321.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Red-Horse K, Drake PM, Fisher SJ . Human pregnancy: the role of chemokine networks at the fetal–maternal interface. Expert Rev Mol Med 2004; 6: 1–14.

    PubMed  Google Scholar 

  25. Rossant J, Cross JC . Placental development: lessons from mouse mutants. Nat Rev Genet 2001; 2: 538–548.

    CAS  PubMed  Google Scholar 

  26. Rawn SM, Cross JC . The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 2008; 24: 159–181.

    CAS  PubMed  Google Scholar 

  27. Cai X, Hagedorn CH, Cullen BR . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10: 1957–1966.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ . Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231–235.

    CAS  PubMed  Google Scholar 

  29. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . Nuclear export of microRNA precursors. Science 2004; 303: 95–98.

    CAS  PubMed  Google Scholar 

  30. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185–197.

    CAS  PubMed  Google Scholar 

  31. Grosshans H, Filipowicz W . Molecular biology: the expanding world of small RNAs. Nature 2008; 451: 414–416.

    CAS  PubMed  Google Scholar 

  32. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105: 1608–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sha AG, Liu JL, Jiang XM, Ren JZ, Ma CH, Lei W et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 2011; 96: 150–155.e5.

    CAS  PubMed  Google Scholar 

  35. Altmae S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 2013; 20: 308–317.

    PubMed  PubMed Central  Google Scholar 

  36. Xia HF, Jin XH, Cao ZF, Hu Y, Ma X . MicroRNA expression and regulation in the uterus during embryo implantation in rat. FEBS J 2014; 281: 1872–1891.

    CAS  PubMed  Google Scholar 

  37. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK . MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci USA 2007; 104: 15144–15149.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 2008; 283: 23473–23484.

    CAS  PubMed  Google Scholar 

  39. Liu G, Abraham E . MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 2013; 33: 170–177.

    PubMed  PubMed Central  Google Scholar 

  40. Shen G, Li X, Jia YF, Piazza GA, Xi Y . Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin 2013; 34: 336–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Revel A, Achache H, Stevens J, Smith Y, Reich R . MicroRNAs are associated with human embryo implantation defects. Hum Reprod 2011; 26: 2830–2840.

    CAS  PubMed  Google Scholar 

  42. Su L, Liu R, Cheng W, Zhu M, Li X, Zhao S et al. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLoS ONE 2014; 9: e87867.

    PubMed  PubMed Central  Google Scholar 

  43. Montenegro D, Romero R, Kim SS, Tarca AL, Draghici S, Kusanovic JP et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol 2009; 217: 113–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR . MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci USA 2012; 109: 7529–7534.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams KC, Renthal NE, Gerard RD, Mendelson CR . The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol 2012; 26: 1857–1867.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR . miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA 2010; 107: 20828–20833.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hassan SS, Romero R, Pineles B, Tarca AL, Montenegro D, Erez O et al. MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol 2010; 202: 80.e1–80.e8.

    Google Scholar 

  48. Wessels JM, Edwards AK, Zettler C, Tayade C . Selection and validation of reference genes for miRNA expression studies during porcine pregnancy. PLoS ONE 2011; 6: e28940.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wessels JM, Edwards AK, Khalaj K, Kridli RT, Bidarimath M, Tayade C . The microRNAome of pregnancy: deciphering miRNA networks at the maternal–fetal interface. PLoS ONE 2013; 8: e72264.

    PubMed  PubMed Central  Google Scholar 

  50. Liu F, Lou YL, Wu J, Ruan QF, Xie A, Guo F et al. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2012; 35: 182–191.

    PubMed  Google Scholar 

  51. Krol J, Loedige I, Filipowicz W . The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597–610.

    CAS  PubMed  Google Scholar 

  52. Pan Q, Chegini N . MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 2008; 26: 479–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Toloubeydokhti T, Pan Q, Luo X, Bukulmez O, Chegini N . The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod Sci 2008; 15: 993–1001.

    PubMed  Google Scholar 

  54. Lessey BA . Fine tuning of endometrial function by estrogen and progesterone through microRNAs. Biol Reprod 2010; 82: 653–655.

    CAS  PubMed  Google Scholar 

  55. Nothnick WB, Healy C . Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reprod Sci 2010; 17: 987–994.

    CAS  PubMed  Google Scholar 

  56. Nothnick WB, Healy C, Hong X . Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrine 2010; 37: 265–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW . Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 2010; 82: 791–801.

    CAS  PubMed  Google Scholar 

  58. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA 2009; 106: 15732–15737.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 2009; 36: 340–347.

    CAS  PubMed  Google Scholar 

  60. Billington WD . The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J Reprod Immunol 2003; 60: 1–11.

    PubMed  Google Scholar 

  61. Croy BA, Esadeg S, Chantakru S, van den Heuvel M, Paffaro VA, He H et al. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 2003; 59: 175–191.

    PubMed  Google Scholar 

  62. Croy BA, He H, Esadeg S, Wei Q, McCartney D, Zhang J et al. Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction 2003; 126: 149–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bilinski MJ, Thorne JG, Oh MJ, Leonard S, Murrant C, Tayade C et al. Uterine NK cells in murine pregnancy. Reprod Biomed Online 2008; 16: 218–226.

    CAS  PubMed  Google Scholar 

  64. Hunt JS, Langat DK, McIntire RH, Morales PJ . The role of HLA-G in human pregnancy. Reprod Biol Endocrinol 2006; 4( Suppl 1): S10.

    PubMed  PubMed Central  Google Scholar 

  65. Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200: 957–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 2010; 120: 4102–4110.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007; 81: 829–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Manaster I, Goldman-Wohl D, Greenfield C, Nachmani D, Tsukerman P, Hamani Y et al. MiRNA-mediated control of HLA-G expression and function. PLoS ONE 2012; 7: e33395.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu XM, Han T, Wang XH, Li YH, Yang HG, Luo YN et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol 2010; 202: 592.e1–592.e7.

    CAS  Google Scholar 

  70. Morandi F, Pistoia V . Soluble HLA-G modulates miRNA-210 and miRNA-451 expression in activated CD4+ T lymphocytes. Int Immunol 2013; 25: 279–285.

    CAS  PubMed  Google Scholar 

  71. Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y, Bass SE et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 2011; 472: 495–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xia HF, Jin XH, Song PP, Cui Y, Liu CM, Ma X . Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int J Mol Sci 2010; 11: 719–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xia HF, Jin XH, Song PP, Cui Y, Liu CM, Ma X . Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. J Reprod Dev 2010; 56: 73–78.

    CAS  PubMed  Google Scholar 

  74. Qian K, Hu L, Chen H, Li H, Liu N, Li Y et al. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 2009; 150: 4734–4743.

    CAS  PubMed  Google Scholar 

  75. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 14: 2486–2494.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang Y, Ridzon D, Wong L, Chen C . Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8: 166.

    PubMed  PubMed Central  Google Scholar 

  77. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R . DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007; 39: 380–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Donker RB, Mouillet JF, Nelson DM, Sadovsky Y . The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod 2007; 13: 273–279.

    CAS  PubMed  Google Scholar 

  80. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ . A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465: 584–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Maccani MA, Padbury JF, Marsit CJ . miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS ONE 2011; 6: e21210.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn 2013; 33: 214–222.

    CAS  PubMed  Google Scholar 

  83. Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D . Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta 2013; 34: 624–627.

    CAS  PubMed  Google Scholar 

  84. Wang D, Na Q, Song WW, Song GY . Altered expression of miR-518b and miR-519a in the placenta is associated with low fetal birth weight. Am J Perinatol 2014; in press.

  85. Perdomo C, Spira A, Schembri F . MiRNAs as regulators of the response to inhaled environmental toxins and airway carcinogenesis. Mutat Res 2011; 717: 32–37.

    CAS  PubMed  Google Scholar 

  86. Liu M, John CM, Jarvis GA . Induction of endotoxin tolerance by pathogenic Neisseria is correlated with the inflammatory potential of lipooligosaccharides and regulated by microRNA-146a. J Immunol 2014; 192: 1768–1777.

    CAS  PubMed  Google Scholar 

  87. Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G et al. In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 2012; 227: 275–285.

    CAS  PubMed  Google Scholar 

  88. Zhao C, Zhang T, Shi Z, Ding H, Ling X . MicroRNA518d regulates PPARalpha protein expression in the placentas of females with gestational diabetes mellitus. Mol Med Rep 2014; in press.

  89. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ . Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest 1996; 97: 540–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Adelman DM, Gertsenstein M, Nagy A, Simon MC, Maltepe E . Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev 2000; 14: 3191–3203.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med 2012; 16: 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo L, Tsai SQ, Hardison NE, James AH, Motsinger-Reif AA, Thames B et al. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta 2013; 34: 599–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ji L, Brkic J, Liu M, Fu G, Peng C, Wang YL . Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34: 981–1023.

    CAS  PubMed  Google Scholar 

  94. Li JY, Yong TY, Michael MZ, Gleadle JM . MicroRNAs: are they the missing link between hypoxia and pre-eclampsia? Hypertens Pregnancy 2014; 33: 102–114.

    CAS  PubMed  Google Scholar 

  95. Whitehead CL, Teh WT, Walker SP, Leung C, Larmour L, Tong S . Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS ONE 2013; 8: e78487.

    PubMed  PubMed Central  Google Scholar 

  96. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX et al. Variations of MicroRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 2014; in press.

  97. Caniggia I, Winter J, Lye SJ, Post M . Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta 2000; 21( Suppl A): S25–S30.

    PubMed  Google Scholar 

  98. Appleton SD, Marks GS, Nakatsu K, Brien JF, Smith GN, Graham CH . Heme oxygenase activity in placenta: direct dependence on oxygen availability. Am J Physiol Heart Circ Physiol 2002; 282: H2055–H2059.

    CAS  PubMed  Google Scholar 

  99. Lash GE, Postovit LM, Matthews NE, Chung EY, Canning MT, Pross H et al. Oxygen as a regulator of cellular phenotypes in pregnancy and cancer. Can J Physiol Pharmacol 2002; 80: 103–109.

    CAS  PubMed  Google Scholar 

  100. Lee DC, Romero R, Kim JS, Tarca AL, Montenegro D, Pineles BL et al. miR-210 targets iron-sulfur cluster scaffold homologue in human trophoblast cell lines: siderosis of interstitial trophoblasts as a novel pathology of preterm preeclampsia and small-for-gestational-age pregnancies. Am J Pathol 2011; 179: 590–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Heusschen R, van Gink M, Griffioen AW, Thijssen VL . MicroRNAs in the tumor endothelium: novel controls on the angioregulatory switchboard. Biochim Biophys Acta 2010; 1805: 87–96.

    CAS  PubMed  Google Scholar 

  102. van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, Schellings MW et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 2011; 10: 769–779.

    CAS  PubMed  Google Scholar 

  103. Suarez Y, Sessa WC . MicroRNAs as novel regulators of angiogenesis. Circ Res 2009; 104: 442–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y . MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J 2010; 24: 2030–2039.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR . The c-Myc-regulated microRNA-1792 (miR-1792) and miR-106a363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol 2013; 33: 1782–1796.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li P, Guo W, Du L, Zhao J, Wang Y, Liu L et al. microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci (Lond) 2013; 124: 27–40.

    CAS  Google Scholar 

  107. Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarparvar E et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci 2012; 125: 3124–3132.

    CAS  PubMed  Google Scholar 

  108. Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J . C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009; 37: 3464–3473.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Flor I, Neumann A, Freter C, Helmke BM, Langenbuch M, Rippe V et al. Abundant expression and hemimethylation of C19MC in cell cultures from placenta-derived stromal cells. Biochem Biophys Res Commun 2012; 422: 411–416.

    CAS  PubMed  Google Scholar 

  110. Kurashina R, Kikuchi K, Iwaki J, Yoshitake H, Takeshita T, Takizawa T . Placenta-specific miRNA (miR-512-3p) targets PPP3R1 encoding the calcineurin B regulatory subunit in BeWo cells. J Obstet Gynaecol Res 2014; 40: 650–660.

    CAS  PubMed  Google Scholar 

  111. Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod 2012; 18: 417–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS ONE 2013; 8: e58502.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA 2013; 110: 12048–12053.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y . Review: placenta-specific microRNAs in exosomes - good things come in nano-packages. Placenta 2014; 35( Suppl): S69–S73.

    CAS  PubMed  Google Scholar 

  115. Xue P, Zheng M, Diao Z, Shen L, Liu M, Gong P et al. miR-155* mediates suppressive effect of PTEN 3′-untranslated region on AP-1/NF-kappaB pathway in HTR-8/SVneo cells. Placenta 2013; 34: 650–656.

    CAS  PubMed  Google Scholar 

  116. Dang LT, Lawson ND, Fish JE . MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol 2013; 33: 193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 2006; 1: e116.

    PubMed  PubMed Central  Google Scholar 

  118. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 2010; 107: 8231–8236.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Panda H, Pelakh L, Chuang TD, Luo X, Bukulmez O, Chegini N . Endometrial miR-200c is altered during transformation into cancerous states and targets the expression of ZEBs, VEGFA, FLT1, IKKbeta, KLF9, and FBLN5. Reprod Sci 2012; 19: 786–796.

    PubMed  PubMed Central  Google Scholar 

  120. Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica 2012; 97: 586–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. He J, Jing Y, Li W, Qian X, Xu Q, Li FS et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS ONE 2013; 8: e56647.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 2010; 115: 4944–4950.

    CAS  PubMed  Google Scholar 

  123. Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008; 68: 5540–5545.

    CAS  PubMed  Google Scholar 

  124. Kang SG, Lee WH, Lee YH, Lee YS, Kim SG . Hypoxia-inducible factor-1alpha inhibition by a pyrrolopyrazine metabolite of oltipraz as a consequence of microRNAs 199a-5p and 20a induction. Carcinogenesis 2012; 33: 661–669.

    CAS  PubMed  Google Scholar 

  125. Pin AL, Houle F, Guillonneau M, Paquet ER, Simard MJ, Huot J . miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 2012; 15: 593–608.

    CAS  PubMed  Google Scholar 

  126. Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol 2011; 55: 1339–1345.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012; 97: E1051–E1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Noack F, Ribbat-Idel J, Thorns C, Chiriac A, Axt-Fliedner R, Diedrich K et al. miRNA expression profiling in formalin-fixed and paraffin-embedded placental tissue samples from pregnancies with severe preeclampsia. J Perinat Med 2011; 39: 267–271.

    PubMed  Google Scholar 

  129. Yan T, Cui K, Huang X, Ding S, Zheng Y, Luo Q et al. Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta 2014; 35: 23–29.

    CAS  PubMed  Google Scholar 

  130. Dong F, Zhang Y, Xia F, Yang Y, Xiong S, Jin L et al. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 2014; in press.

  131. Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D et al. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 2013; 112: 152–164.

    CAS  PubMed  Google Scholar 

  132. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF . MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010; 107: 13450–13455.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Su L, Zhao S, Zhu M, Yu M . Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation. Reprod Fertil Dev 2010; 22: 1175–1182.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr Rami T Kridli for assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakant Tayade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidarimath, M., Khalaj, K., Wessels, J. et al. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol 11, 538–547 (2014). https://doi.org/10.1038/cmi.2014.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.45

Keywords

This article is cited by

Search

Quick links