Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

Abstract

The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L . Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev 2005; 206: 306–335.

    Article  PubMed  Google Scholar 

  2. Kaushic C, Ferreira VH, Kafka JK, Nazli A . HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 2010; 63: 566–575.

    Article  CAS  PubMed  Google Scholar 

  3. Brotman RM, Ravel J, Bavoil PM, Gravitt PE, Ghanem KG . Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 2014; 32: 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  4. Ferreira VH, Kafka JK, Kaushic C . Influence of common mucosal co-factors on HIV infection in the female genital tract. Am J Reprod Immunol 2014; 71: 743–554.

    Article  CAS  Google Scholar 

  5. Blaskewicz CD, Pudney J, Anderson DJ . Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 2011; 85: 97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson DJ, Marathe J, Pudney J . The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol 2014; 71: 618–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wira CR, Richardson J, Prabhala R . Endocrine regulation of mucosal immunity: effect of sex hormones and cytokines on the afferent and efferent arms of the immune system in the female reproductive tract. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (ed.) Handbook of Mucosal Immunology. San Diego, CA: Academic Press, 1994: 705–718.

    Chapter  Google Scholar 

  8. Wira CR, Crane-Godreau MA, Grant-Tschudy KS . Endocrine regulation of the mucosal immune system in the female reproductive tract. In: Lamm ME Mestecky J, Strober W, Bienenstock J, McGhee JR and Mayer L (ed.). Mucosal Immunology. San Diego, CA: Elsevier Academic Press, 2005: 1661–1676.

    Chapter  Google Scholar 

  9. Kaushic C, Roth KL, Anipindi V, Xiu F . Increased prevalence of sexually transmitted viral infections in women: the role of female sex hormones in regulating susceptibility and immune responses. J Reprod Immunol 2011; 88: 204–209.

    Article  CAS  PubMed  Google Scholar 

  10. Mestecky J, Moldoveanu Z, Russell MW . Immunologic uniqueness of the genital tract: challenge for vaccine development. Am J Reprod Immunol 2005; 53: 208–214.

    Article  CAS  PubMed  Google Scholar 

  11. Mirmonsef P, Gilbert D, Zariffard MR, Hamaker BR, Kaur A, Landay AL . The effects of commensal bacteria on innate immune responses in the female genital tract. Am J Reprod Immunol 2011; 65: 190–195.

    Article  CAS  PubMed  Google Scholar 

  12. Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV . Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 2011; 65: 196–211.

    Article  CAS  PubMed  Google Scholar 

  13. Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.

    Article  CAS  PubMed  Google Scholar 

  14. Valore EV, Park CH, Igreti SL, Ganz T . Antimicrobial components of vaginal fluid. Am J Obstet Gynecol 2002; 187: 561–568.

    Article  CAS  PubMed  Google Scholar 

  15. Wiesner J, Vilcinskas A . Antimicrobial peptides: the ancient arm of the human immune system. Virulence 2010; 1: 440–464.

    Article  PubMed  Google Scholar 

  16. Aboud L, Ball TB, Tjernlund A, Burgener A . The role of serpin and cystatin antiproteases in mucosal innate immunity and their defense against HIV. Am J Reprod Immunol 2014; 71: 12–23.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh M, Shen Z, Fahey JV, Cu-Uvin S, Mayer K, Wira CR . Trappin-2/Elafin: a novel innate anti-human immunodeficiency virus-1 molecule of the human female reproductive tract. Immunology 2009; 29: 207–219.

    Google Scholar 

  18. Chen K, Huang J, Zhang C, Huang S, Nunnari G, Wang FX . Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of APOBEC3G in resting primary CD4 T cells. J Virol 2006; 80: 7645–7657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cremer I, Vieillard V, de Maeyer E . Retrovirally mediated IFN-beta transduction of macrophages induces resistance to HIV, correlated with up-regulation of RANTES production and down-regulation of C–C chemokine receptor-5 expression. J Immunol 2000; 164: 1582–1587.

    Article  CAS  PubMed  Google Scholar 

  20. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427: 848–853.

    Article  CAS  PubMed  Google Scholar 

  21. Neil SJ, Zang T, Bieniasz PD . Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008; 451: 425–430.

    Article  CAS  PubMed  Google Scholar 

  22. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S . Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474: 658–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C . SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474: 654–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ . MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013; 502: 563–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang JJ, Woods M, Lindsay RJ, Doyle EH, Griesbeck M, Chan ES . Higher expression of several interferon-stimulated genes in HIV-1-infected females after adjusting for the level of viral replication. J Infect Dis 2013; 208: 830–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W . Interferon-alpha is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS ONE 2013; 8: e56527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardy MP, Owczarek CM, Jermiin LS, Ejdeback M, Hertzog PJ . Characterization of the type I interferon locus and identification of novel genes. Genomics 2004; 84: 331–345.

    Article  CAS  PubMed  Google Scholar 

  28. Sharkey DJ, Macpherson AM, Tremellen KP, Robertson SA . Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol Hum Reprod 2007; 13: 491–501.

    Article  CAS  PubMed  Google Scholar 

  29. Xi Y, Day SL, Jackson RJ, Ranasinghe C . Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol 2012; 5: 610–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou W, Wang X, Ye L, Zhou L, Yang ZQ, Riedel E . Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol 2009; 83: 3834–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu MQ, Zhou DJ, Wang X, Zhou W, Ye L, Li JL . IFN-lambda3 inhibits HIV infection of macrophages through the JAK–STAT pathway. PLoS ONE 2012; 7: e35902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian RR, Guo HX, Wei JF, Yang CK, He SH, Wang JH . IFN-lambda inhibits HIV-1 integration and post-transcriptional events in vitro, but there is only limited in vivo repression of viral production. Antiviral Res 2012; 95: 57–65.

    Article  CAS  PubMed  Google Scholar 

  33. Kaushic C . HIV-1 infection in the female reproductive tract: role of interactions between HIV-1 and genital epithelial cells. Am J Reprod Immunol 2011; 65: 253–260.

    Article  CAS  PubMed  Google Scholar 

  34. King AE, Horne AW, Hombach-Klonisch S, Mason JI, Critchley HO . Differential expression and regulation of nuclear oligomerization domain proteins NOD1 and NOD2 in human endometrium: a potential role in innate immune protection and menstruation. Mol Hum Reprod 2009; 15: 311–319.

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer TM, Desouza K, Fahey JV, Beagley KW, Wira CR . Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology 2004; 112: 428–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nazli A, Yao XD, Smieja M, Rosenthal KL, Ashkar AA, Kaushic C . Differential induction of innate anti-viral responses by TLR ligands against Herpes simplex virus, type 2, infection in primary genital epithelium of women. Antiviral Res 2009; 81: 103–112.

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira VH, Nazli A, Khan G, Mian MF, Ashkar AA, Gray-Owen S . Endometrial epithelial cell responses to co-infecting viral and bacterial pathogens in the genital tract can activate the HIV-1 LTR in an NFκB and AP-1 dependent manner. J Infect Dis 2011; 204: 299–308.

    Article  CAS  PubMed  Google Scholar 

  38. Harwani SC, Lurain NS, Zariffard MR, Spear GT . Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue. Virol J 2007; 4: 133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schaefer TM, Fahey JV, Wright JA, Wira CR . Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol 2005; 174: 992–1002.

    Article  CAS  PubMed  Google Scholar 

  40. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki A . Mucosal dendritic cells. Annu Rev Immunol 2007; 25: 381–418.

    Article  CAS  PubMed  Google Scholar 

  42. Janeway CA Jr, Medzhitov R . Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216.

    Article  CAS  PubMed  Google Scholar 

  43. Cella M, Sallusto F, Lanzavecchia A . Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997; 9: 10–16.

    Article  CAS  PubMed  Google Scholar 

  44. Iijima N, Thompson JM, Iwasaki A . Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 2008; 1: 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D . Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 2009; 83: 3258–3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pudney J, Quayle AJ, Anderson DJ . Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod 2005; 73: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  47. Trifonova RT, Lieberman J, van Baarle D . Distribution of immune cells in the human cervix and implications for HIV transmission. Am J Reprod Immunol 2014; 71: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yeaman GR, Guyre PM, Fanger MW, Collins JE, White HD, Rathbun W . Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J Leukoc Biol 1997; 61: 427–435.

    Article  CAS  PubMed  Google Scholar 

  49. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J et al. DC-SIGN, a dendritic cell-specific HIV-1 binding protein that enhances trans-infection of T-cells. Cell 2000; 100: 587–597.

    Article  CAS  PubMed  Google Scholar 

  50. van Kooyk Y, Geijtenbeek TB . DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 2003; 3: 697–709.

    Article  CAS  PubMed  Google Scholar 

  51. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM . Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997; 38: 350–359.

    Article  CAS  PubMed  Google Scholar 

  52. Robertson SA . Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci 2007; 85: E36–E44.

    Article  CAS  PubMed  Google Scholar 

  53. Moffett-King A, Entrican G, Ellis S, Hutchinson J, Bainbridge D . Natural killer cells and reproduction. Trends Immunol 2002; 23: 332–333.

    Article  CAS  PubMed  Google Scholar 

  54. Croy BA, van den Heuvel MJ, Borzychowski AM, Tayade C . Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 2006; 214: 161–185.

    Article  CAS  PubMed  Google Scholar 

  55. Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G . CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001; 31: 3121–3127.

    Article  CAS  PubMed  Google Scholar 

  56. Eriksson M, Meadows SK, Wira CR, Sentman CL . Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol 2004; 76: 667–675.

    Article  CAS  PubMed  Google Scholar 

  57. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F . Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198: 1201–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. White HD, Crassi KM, Givan AL, Stern JE, Gonzalez JL, Memoli VA . CD3+CD8+ CTL activity within the human female reproductive tract: influence of stage and menstrual cycle and menopause. J Immunol 1997; 158: 3017–3027.

    CAS  PubMed  Google Scholar 

  59. Shanmugasundaram U et al. Phenotype and functionality of CD4+ and CD8+ T cells in the upper reproductive tract of healthy premenopausal women. Am J Reprod Immunol 2014; 71: 95–108.

    Article  CAS  PubMed  Google Scholar 

  60. McKinnon LR, Nyanga B, Chege D, Izulla P, Kimani M, Huibner S . Characterization of a human cervical CD4+ T cell subset coexpressing multiple markers of HIV susceptibility. J Immunol 2011; 187: 6032–6042.

    Article  CAS  PubMed  Google Scholar 

  61. Robertson SA, Prins JR, Sharkey DJ, Moldenhauer LM . Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013; 69: 315–330.

    Article  CAS  PubMed  Google Scholar 

  62. Russell MW, Mestecky J . Humoral immune responses to microbial infections in the genital tract. Microbes Infect 2002; 4: 667–677.

    Article  CAS  PubMed  Google Scholar 

  63. Kutteh WH, Mestecky J, Wira CR . Mucosal immunity in the human female reproductive tract. In: Lamm ME Mestecky J, Strober W, Bienenstock J, McGhee JR, Mayer L (ed.) Mucosal Immunology. San Diego, CA: Elsevier Academic Press, 2005: 1631–1646.

    Chapter  Google Scholar 

  64. Mestecky J, Moldoveanu Z, Smith PD, Hel Z, Alexander RC . Mucosal immunology of the genital and gastrointestinal tracts and HIV-1 infection. J Reprod Immunol 2009; 83: 196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beagley KW, Gockel CM . Regulation of innate and adaptive immunity by female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 2003; 38: 13–22.

    Article  CAS  PubMed  Google Scholar 

  66. Roth KL, Bhavanam S, Jiang H, Gillgrass A, Ho K, Ferreira VH . Delayed but effective induction of mucosal memory immune responses against genital HSV-2 in the absence of secondary lymphoid organs. Mucosal Immunol 2013; 6: 56–68.

    Article  CAS  PubMed  Google Scholar 

  67. Kutteh WH, Moldoveanu Z, Mestecky J . Mucosal immunity in the female reproductive tract: correlation of immunoglobulins, cytokines, and reproductive hormones in human cervical mucus around the time of ovulation. AIDS Res Hum Retroviruses 1998; 14( Suppl 1): S51–S55.

    CAS  PubMed  Google Scholar 

  68. Li Z, Palaniyandi S, Zeng R, Tuo W, Roopenian DC, Zhu X . Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci USA 2011; 108: 4388–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaushic C, Ashkar AA, Reid LA, Rosenthal KL . Progesterone increases susceptibility and decreases immune responses to genital herpes infection. J Virol 2003; 77: 4558–4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gillgrass AE, Ashkar AA, Rosenthal KL, Kaushic C . Prolonged exposure to progesterone prevents induction of protective mucosal responses following intravaginal immunization with attenuated herpes simplex virus type 2. J Virol 2003; 77: 9845–9851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cherpes TL, Busch JL, Sheridan BS, Harvey SA, Hendricks RL . Medroxyprogesterone acetate inhibits CD8+ T cell viral-specific effector function and induces herpes simplex virus type 1 reactivation. J Immunol 2008; 181: 969–975.

    Article  CAS  PubMed  Google Scholar 

  72. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S . Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 1995; 155: 128–133.

    CAS  PubMed  Google Scholar 

  73. Enomoto LM, Kloberdanz KJ, Mack DG, Elizabeth D, Weinberg A . Ex vivo effect of estrogen and progesterone compared with dexamethasone on cell-mediated immunity of HIV-infected and uninfected subjects. J Acquir Immune Defic Syndr 2007; 45: 137–143.

    Article  CAS  PubMed  Google Scholar 

  74. Arici A, Senturk LM, Seli E, Bahtiyar MO, Kim G . Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by estrogen and progesterone. Biol Reprod 1999; 61: 85–90.

    Article  CAS  PubMed  Google Scholar 

  75. Inoue T, Kanzaki H, Imai K, Narukawa S, Katsuragawa H, Watanabe H . Progesterone stimulates the induction of human endometrial CD56+ lymphocytes in an in vitro culture system. J Clin Endocrinol Metab 1996; 81: 1502–1507.

    CAS  PubMed  Google Scholar 

  76. Scanlan JM, Werner JJ, Legg RL, Laudenslager ML . Natural killer cell activity is reduced in association with oral contraceptive use. Psychoneuroendocrinology 1995; 20: 281–287.

    Article  CAS  PubMed  Google Scholar 

  77. Yovel G, Shakhar K, Ben-Eliyahu S . The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol 2001; 81: 254–262.

    Article  CAS  PubMed  Google Scholar 

  78. Hughes GC, Clark EA . Regulation of dendritic cells by female sex steroids: relevance to immunity and autoimmunity. Autoimmunity 2007; 40: 470–481.

    Article  CAS  PubMed  Google Scholar 

  79. Lund JM, Linehan MM, Iijima N, Iwasaki A . Cutting Edge: plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J Immunol 2006; 177: 7510–7514.

    Article  CAS  PubMed  Google Scholar 

  80. Mostad SB . Prevalence and correlates of HIV-1 shedding in female genital tract. AIDS Res Hum Retroviruses 1999; 1998: S11–S15.

    Google Scholar 

  81. Wang CC, McClelland RS, Overbaugh J, Reilly M, Panteleeff DD, Mandaliya K . The effect of hormonal contraception on genital tract shedding of HIV-1. AIDS 2004; 18: 205–209.

    Article  PubMed  Google Scholar 

  82. Straub RH . The complex role of estrogens in inflammation. Endocr Rev 2007; 28: 521–574.

    Article  CAS  PubMed  Google Scholar 

  83. Zang YC, Halder JB, Hong J, Rivera VM, Zhang JZ . Regulatory effects of estradiol on T cell migration and cytokine profile: inhibition of transcription factor NF-kappa B. J Neuroimmunol 2002; 124: 106–114.

    Article  CAS  PubMed  Google Scholar 

  84. Wira CR, Rossoll RM, Kaushic C . Antigen-presenting cells in the female reproductive tract: influence of estradiol on antigen presentation by vaginal cells. Endocrinology 2002; 141: 2877–2885.

    Article  Google Scholar 

  85. Brabin L . Interactions of female hormonal environment, susceptibility to viral infection and disease progression. AIDS Patient Care STDS 2002; 16: 211–221.

    Article  PubMed  Google Scholar 

  86. Hladik F, McElrath MJ . Setting the stage: host invasion by HIV. Nat Rev Immunol 2008; 8: 447–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M . Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol 2000; 10: 325–328.

    Article  CAS  PubMed  Google Scholar 

  88. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P . Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  89. Abdelwahab SF, Cocchi F, Bagley KC, Kamin-Lewis R, Gallo RC, DeVico A . HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses. Proc Natl Acad Sci USA 2003; 100: 15006–15010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fahey JV, Schaefer TM, Channon JY, Wira CR . Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract. Hum Reprod 2005; 20: 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  91. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD . Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 2010; 6: e1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ . HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 2013; 191: 4246–4258.

    Article  CAS  PubMed  Google Scholar 

  93. Pudney J, Anderson D . Innate and acquired immunity in the human penile urethra. J Reprod Immunol 2011; 88: 219–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moldoveanu Z, Huang WQ, Kulhavy R, Pate MS, Mestecky J . Human male genital tract secretions both mucosa and systemic immune compartments contribute to the humoral immunity. J Immunol 2005; 175: 4127–4136.

    Article  CAS  PubMed  Google Scholar 

  95. Anderson D, Politch JA, Pudney J . HIV infection and immune defense of the penis. Am J Reprod Immunol 2011; 65: 220–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Urbschat A, Paulus P, Wiegratz I, Beschmann H, Hadji P, Hofmann R . Macrophage metalloelastase-12 is detectable in human seminal plasma and represents a predictor for inflammatory processes in the male genital tract. Andrologia 2014; in press.

  97. Smelov V, Eklund C, Bzhalava D, Novikov A, Dillner J . Expressed prostate secretions in the study of human papillomavirus epidemiology in the male. PloS ONE 2013; 8: e66630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Head JR, Neaves WB, Billingham RE . Immune privilege in the testis. I. Basic parameters of allograft survival. Transplantation 1983; 36: 423–431.

    Article  CAS  PubMed  Google Scholar 

  99. Fijak M, Meinhardt A . The testis in immune privilege. Immunol Rev 2006; 213: 66–81.

    Article  CAS  PubMed  Google Scholar 

  100. Li N, Wang T, Han D . Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 2012; 3: 152.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Meinhardt A, Hedger MP . Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol 2011; 335: 60–68.

    Article  CAS  PubMed  Google Scholar 

  102. Meinhardt A, Bacher M, Metz C, Bucala R, Wreford N, Lan H . Local regulation of macrophage subsets in the adult rat testis—examination of the roles of the seminiferous tubules, testosterone, and macrophage-migration inhibitory factor. Biol Reprod 1998; 59: 371–378.

    Article  CAS  PubMed  Google Scholar 

  103. Filippini A, Riccioli A, Padula F, Lauretti P, D'Alessio A, De Cesaris P . Control and impairment of immune privilege in the testis and in semen. Hum Reprod Update 2001; 7: 444–449.

    Article  CAS  PubMed  Google Scholar 

  104. Bronson R . Biology of the male reproductive tract: its cellular and morphological considerations. Am J Reprod Immunol 2011; 65: 212–219.

    Article  CAS  PubMed  Google Scholar 

  105. Hedger MP . Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl 2011; 32: 625–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Johansson M, Lycke NY . Immunology of the human genital tract. Curr Opin Infect Dis 2003; 16: 43–49.

    Article  CAS  PubMed  Google Scholar 

  107. Mital P, Hinton BT, Dufour JM . The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol Reprod 2011; 84: 851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mueller S, Rosenquist TA, Takai Y, Bronson RA, Wimmer E . Loss of nectin-2 at Sertoli–spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration. Biol Reprod 2003; 69: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  109. Sanberg PR, Borlongan CV, Saporta S, Cameron DF . Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nat Biotechnol 1996; 14: 1692–1695.

    Article  CAS  PubMed  Google Scholar 

  110. Suarez-Pinzon W, Korbutt GS, Power R, Hooton J, Rajotte RV, Rabinovitch A . Testicular sertoli cells protect islet beta-cells from autoimmune destruction in NOD mice by a transforming growth factor-beta1-dependent mechanism. Diabetes 2000; 49: 1810–1818.

    Article  CAS  PubMed  Google Scholar 

  111. Wyatt C, Law L, Magnuson J, Griswold M, Magnuson N . Suppression of lymphocyte proliferation by proteins secreted by cultured Sertoli cells. J Reprod Immunol 1988; 14: 27–40.

    Article  CAS  PubMed  Google Scholar 

  112. de Cesaris P, Filippini A, Cervelli C, Riccioli A, Muci S, Starace G . Immunosuppressive molecules produced by Sertoli cells cultured in vitro: biological effects on lymphocytes. Biochem Biophys Res Commun 1992; 186: 1639–1646.

    Article  CAS  PubMed  Google Scholar 

  113. Maekawa M, Kamimura K, Nagano T . Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol 1996; 59: 1–13.

    Article  CAS  PubMed  Google Scholar 

  114. Verhoeven G, Hoeben E, de Gendt K . Peritubular cell–Sertoli cell interactions: factors involved in PmodS activity. Andrologia 2000; 32: 42–45.

    CAS  PubMed  Google Scholar 

  115. Schell C, Albrecht M, Mayer C, Schwarzer JU, Frungieri MB, Mayerhofer A . Exploring human testicular peritubular cells: identification of secretory products and regulation by tumor necrosis factor-α. Endocrinology 2008; 149: 1678–1686.

    Article  CAS  PubMed  Google Scholar 

  116. Le Tortorec A, Dejucq-Rainsford N . HIV infection of the male genital tract–consequences for sexual transmission and reproduction. Int J Androl 2010; 33: e98–e108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Raburn DJ, Coquelin A, Reinhart AJ, Hutson JC . Regulation of the macrophage population in postnatal rat testis. J Reprod Immunol 1993; 24: 139–151.

    Article  CAS  PubMed  Google Scholar 

  118. Hedger M, Meinhardt A . Local regulation of T cell numbers and lymphocyte-inhibiting activity in the interstitial tissue of the adult rat testis. J Reprod Immunol 2000; 48: 69–80.

    Article  CAS  PubMed  Google Scholar 

  119. Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C . Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod 2011; 26: 2799–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hall SH, Hamil KG, French FS . Host defense proteins of the review male reproductive tract. J Androl 2001; 23: 585–597.

    Google Scholar 

  121. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  122. Nishimura M, Naito S . Tissue-specific mRNA expression profiles of human Toll-like receptors and related genes. Biol Pharm Bull 2005; 28: 886–892.

    Article  CAS  PubMed  Google Scholar 

  123. Pudney J, Anderson DJ . Expression of Toll-like receptors in genital tract tissues from normal and HIV-infected men. Am J Reprod Immunol 2011; 65: 28–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pudney J, Anderson DJ . Immunobiology of the human penile urethra. Am J Pathol 1995; 147: 155–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Girling JE, Hedger MP . Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunol Cell Biol 2007; 85: 481–489.

    Article  CAS  PubMed  Google Scholar 

  126. Hakovirta H, Syed V, Jégou B, Parvinen M . Function of interleukin-6 as an inhibitor of meiotic DNA synthesis in the rat seminiferous epithelium. Mol Cell Endocrinol 1995; 108: 193–198.

    Article  CAS  PubMed  Google Scholar 

  127. Lee NP, Yan Cheng C . Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′, 5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 2003; 144: 3114–3129.

    Article  CAS  PubMed  Google Scholar 

  128. Parvinen M, Soder O, Mali P, Froysa B, Ritzen EM . In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-l α. Endocrinology 1991; 129: 1614–1620.

    Article  CAS  PubMed  Google Scholar 

  129. Russo CL, Spurr-Michaud S, Tisdale A, Pudney J, Anderson D, Gipson IK . Mucin gene expression in human male urogenital tract epithelia. Hum Reprod 2006; 21: 2783–2793.

    Article  CAS  PubMed  Google Scholar 

  130. Gipson IK, Ho SB, Spurr-Michaud SJ, Tisdale AS, Zhan Q, Torlakovic E . Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod 1997; 56: 999–1011.

    Article  CAS  PubMed  Google Scholar 

  131. Theodoropoulos G, Carraway KL . Molecular signaling in the regulation of mucins. J Cellular Biochem 2007; 102: 1103–1116.

    Article  CAS  Google Scholar 

  132. Porter E et al. Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell–neutrophil interactions. Infect Immun 2005; 73: 4823–4833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. King AE, Critchley HO, Kelly RW . Innate immune defences in the human endometrium. Reprod Biol Endocrinol 2003; 1: 116.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.

    Article  CAS  PubMed  Google Scholar 

  135. Zhao C, Wang I, Lehrer RI . Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 1996; 396: 319–322.

    Article  CAS  PubMed  Google Scholar 

  136. García JR, Krause A, Schulz S, Rodríguez-Jiménez FJ, Klüver E, Adermann K . Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001; 15: 1819–1821.

    Article  PubMed  CAS  Google Scholar 

  137. Gropp R, Frye M, Wagner TO, Bargon J . Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Ther 1999; 10: 957–964.

    Article  CAS  PubMed  Google Scholar 

  138. Schonwetter BS, Stolzenberg ED, Zasloff MA . Epithelial antibiotics induced at sites of inflammation. Science 1995; 267: 1645–1648.

    Article  CAS  PubMed  Google Scholar 

  139. Schröder JM, Harder J . Human beta-defensin-2. Int J Biochem Cell Biol 1999; 31: 645–651.

    Article  PubMed  Google Scholar 

  140. Tauber PF, Zaneveld LJ, Propping D, Schumacher GF . Components of human split ejaculates. II. Enzymes and proteinase inhibitors. J Reprod Fertil 1976; 46: 165–171.

    Article  CAS  PubMed  Google Scholar 

  141. Ohlsson K, Bjartell A, Lilja H . Secretory leucocyte protease inhibitor in the male genital tract: PSA-induced proteolytic processing in human semen and tissue localization. J Androl 1995; 16: 64–74.

    CAS  PubMed  Google Scholar 

  142. Levay PF, Viljoen M . Lactoferrin: a general review. Haematologica 1995; 80: 252–267.

    CAS  PubMed  Google Scholar 

  143. Das SK, Taylor JA, Korach KS, Paria BC, Dey SK, Lubahn DB . Estrogenic responses in estrogen receptor-alpha deficient mice reveal a distinct estrogen signaling pathway. Proc Natl Acad Sci USA 1997; 94: 12786–12791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Singh PK, Tack BF, McCray PB, Welsh MJ . Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 2000; 279: L799–L805.

    Article  CAS  PubMed  Google Scholar 

  145. Sun B, Qi N, Shang T, Wu H, Deng T, Han D . Sertoli cell-initiated testicular innate immune response through Toll-like receptor-3 activation is negatively regulated by Tyro3, Axl, and mer receptors. Endocrinology 2010; 151: 2886–2897.

    Article  CAS  PubMed  Google Scholar 

  146. Wu H, Wang H, Xiong W, Chen S, Tang H, Han D . Expression patterns and functions of Toll-like receptors in mouse sertoli cells. Endocrinology 2008; 149: 4402–4412.

    Article  CAS  PubMed  Google Scholar 

  147. Hedger MP . Macrophages and the immune responsiveness of the testis. J Reprod Immunol 2002; 57: 19–34.

    Article  CAS  PubMed  Google Scholar 

  148. Kern S, Maddocks S . Indomethacin blocks the immunosuppressive activity of rat testicular macrophages cultured in vitro. J Reprod Immunol 1995; 28: 189–201.

    Article  CAS  PubMed  Google Scholar 

  149. Kern S, Robertson SA, Mau VJ, Maddocks S . Cytokine secretion by macrophages in the rat testis. Biol Reprod 1995; 53: 1407–1416.

    Article  CAS  PubMed  Google Scholar 

  150. Rival C, Theas MS, Suescun MO, Jacobo P, Guazzone V, van Rooijen N . Functional and phenotypic characteristics of testicular macrophages in experimental autoimmune orchitis. J Pathol 2008; 215: 108–117.

    Article  CAS  PubMed  Google Scholar 

  151. Gerdprasert O, O'Bryan MK, Nikolic-Paterson DJ, Sebire K, de Kretser DM, Hedger MP . Expression of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor in normal and inflamed rat testis. Mol Hum Reprod 2002; 8: 518–524.

    Article  CAS  PubMed  Google Scholar 

  152. Breucker H . Macrophages, a normal component in seasonally involuting testes of the swan, Cygnus olor. Cell Tissue Res 1978; 193: 463–471.

    Article  CAS  PubMed  Google Scholar 

  153. Gerdprasert O et al. The response of testicular leukocytes to lipopolysaccharide-induced inflammation: further evidence for heterogeneity of the testicular macrophage population. Cell Tissue Res 2002; 308: 277–285.

    Article  CAS  PubMed  Google Scholar 

  154. Sanchez JF et al. GABAergic lineage differentiation of AF5 neural progenitor cells in vitro. Cell Tissue Res 2006; 324: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aguilar R, Anton F, Bellido C, Aguilar E, Gaytan F . Testicular serotonin is related to mast cells but not to Leydig cells in the rat. J Endocrinol 1995; 146: 15–21.

    Article  CAS  PubMed  Google Scholar 

  156. Abe M, Kurosawa M, Ishikawa I, Miyachi Y, Kido H . Mast cell tryptase stimulates both human dermal fibroblast proliferation and type 1 collagen production. Clin Exp Allergy 1998; 28: 1509–1517.

    Article  CAS  PubMed  Google Scholar 

  157. Jacobo P, Guazzone V, Jarazo-Dietrich S, Theas M, Lustig L . Differential changes in CD4+ and CD8+ effector and regulatory T lymphocyte subsets in the testis of rats undergoing autoimmune orchitis. J Reprod Immunol 2009; 81: 44–54.

    Article  CAS  PubMed  Google Scholar 

  158. Pudney J, Anderson D . Orchitis and human immunodeficiency virus type 1 infected cells in reproductive tissues from men with the acquired immune deficiency syndrome. Am J Pathol 1991; 139: 149–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Politch JA, Tucker L, Bowman FP, Anderson DJ . Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod 2007; 22: 2928–2935.

    Article  CAS  PubMed  Google Scholar 

  160. Skibinski G, Kelly RW, Harrison CM, McMillan LA, James K . Relative immunosuppressive activity of human seminal prostaglandins. J Reprod Immunol 1992; 22: 185–195.

    Article  CAS  PubMed  Google Scholar 

  161. Kelly RW, Critchley HO . A T-helper-2 bias in decidua: the prostaglandin contribution of the macrophage and trophoblast. J Reprod Immunol 1997; 33: 181–187.

    Article  CAS  PubMed  Google Scholar 

  162. Kelly RW . Prostaglandins in primate semen: biasing the immune system to benefit spermatozoa and virus? Prostaglandins Leukot Essent Fatty Acids 1997; 57: 113–118.

    Article  CAS  PubMed  Google Scholar 

  163. Robertson SA . Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res 2005; 322: 43–52.

    Article  PubMed  Google Scholar 

  164. Robertson SA, Ingman WV, O'Leary S, Sharkey DJ, Tremellen KP . Transforming growth factor β—a mediator of immune deviation in seminal plasma. J Reprod Immunol 2002; 57: 109–128.

    Article  CAS  PubMed  Google Scholar 

  165. Gutsche S, von Wolff M, Strowitzki T, Thaler C . Seminal plasma induces mRNA expression of IL-1β, IL-6 and LIF in endometrial epithelial cells in vitro. Mol Hum Reprod 2003; 9: 785–791.

    Article  CAS  PubMed  Google Scholar 

  166. Robertson SA, Prins JR, Sharkey DJ, Moldenhauer LM . Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013; 69: 315–330.

    Article  CAS  PubMed  Google Scholar 

  167. Sharkey DJ, Macpherson AM, Tremellen KP, Robertson SA . Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol Hum Reprod 2007; 13: 491–501.

    Article  CAS  PubMed  Google Scholar 

  168. Kafka JK, Sheth PM, Nazli A, Osborne BJ, Kovacs C, Kaul R . Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat. AIDS 2012; 26: 27–36.

    Article  PubMed  Google Scholar 

  169. Alexander R, Mestecky J . Neutralizing antibodies in mucosal secretions: IgG or IgA? Curr HIV Res 2007; 5: 588–593.

    Article  CAS  PubMed  Google Scholar 

  170. Cutolo M, Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B . Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 2004; 13: 635–638.

    Article  CAS  PubMed  Google Scholar 

  171. Rettew JA, Huet-Hudson YM, Marriott I . Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol Reprod 2008; 78: 432–437.

    Article  CAS  PubMed  Google Scholar 

  172. Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE . Androgens regulate the permeability of the blood–testis barrier. Proc Natl Acad Sci USA 2005; 102: 16696–16700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Duckett RJ, Hedger MP, McLachlan RI, Wreford N . The effects of gonadotropin-releasing hormone immunization and recombinant follicle-stimulating hormone on the Leydig cell and macrophage populations of the adult rat testis. J Androl 1997; 18: 417–423.

    CAS  PubMed  Google Scholar 

  174. Page ST, Plymate SR, Bremner WJ, Matsumoto AM, Hess DL, Lin DW . Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am J Physiol Endocrinol Metab 2006; 290: E856–E863.

    Article  CAS  PubMed  Google Scholar 

  175. Garolla A, Pizzol D, Bertoldo A, Menegazzo M, Barzon L, Foresta C . Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J Reprod Immunol 2013; 100: 20–29.

    Article  PubMed  Google Scholar 

  176. UNAIDS. Global Report: UNAIDS Report on the Global AIDS Epidemic 2013. Geneva: UNAIDS, 2013.

  177. Shattock RJ, Moore JP . Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 2003; 1: 25–34.

    Article  CAS  PubMed  Google Scholar 

  178. Cardona-Maya W, Velilla PA, Montoya CJ, Cadavid A, Rugeles MT . In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor. J Reprod Immunol 2011; 92: 1–7.

    Article  CAS  PubMed  Google Scholar 

  179. Eyre RC, Zheng G, Kiessling AA . Multiple drug resistance mutations in human immunodeficiency virus in semen but not blood of a man on antiretroviral therapy. Urology 2000; 55: 591.

    Article  CAS  PubMed  Google Scholar 

  180. Gupta P, Leroux C, Patterson BK, Kingsley L, Rinaldo C, Ding M . Human immunodeficiency virus type 1 shedding pattern in semen correlates with the compartmentalization of viral Quasi species between blood and semen. J Infect Dis 2000; 182: 79–87.

    Article  CAS  PubMed  Google Scholar 

  181. Pillai SK, Good B, Pond SK, Wong JK, Strain MC, Richman DD . Semen-specific genetic characteristics of human immunodeficiency virus type 1 env. J Virol 2005; 79: 1734–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ping LH, Cohen MS, Hoffman I, Vernazza P, Seillier-Moiseiwitsch F, Chakraborty H . Effects of genital tract inflammation on human immunodeficiency virus type 1 V3 populations in blood and semen. J Virol 2000; 74: 8946–8952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Quayle AJ, Xu C, Mayer KH, Anderson DJ . T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis 1997; 176: 960–968.

    Article  CAS  PubMed  Google Scholar 

  184. Münch J, Sauermann U, Yolamanova M, Raue K, Stahl-Hennig C, Kirchhoff F . Effect of semen and seminal amyloid on vaginal transmission of simian immunodeficiency virus. Retrovirology 2013; 10: 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Coombs RW, Speck CE, Hughes JP, Lee W, Sampoleo R, Ross SO . Association between culturable human immunodeficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: evidence for compartmentalization of HIV-1 between semen and blood. J Infect Dis 1998; 177: 320–330.

    Article  CAS  PubMed  Google Scholar 

  186. Bourlet T, Cazorla C, Berthelot P, Grattard F, Cognasse F, Fresard A . Compartmentalization of HIV-1 according to antiretroviral therapy: viral loads are correlated in blood and semen but poorly in blood and saliva. AIDS 2001; 15: 284–285.

    Article  CAS  PubMed  Google Scholar 

  187. Kalichman SC, Di Berto G, Eaton L . Human immunodeficiency virus viral load in blood plasma and semen: review and implications of empirical findings. Sex Transm Dis 2008; 35: 55–60.

    Article  PubMed  Google Scholar 

  188. Sheth PM et al. Persistent HIV RNA shedding in semen despite effective antiretroviral therapy. AIDS 2009; 23: 2050–2054.

    Article  CAS  PubMed  Google Scholar 

  189. Dejucq N, Jegou B . Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 2001; 65: 208–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schürmeyer T, Mueller V, von zur Muehlen A, Schmidt R . Endocrine testicular function in HIV-infected outpatients. Eur J Med Res 1997; 2: 275–281.

    PubMed  Google Scholar 

  191. Christeff N, Gharakhanian S, Thobie N, Rozenbaum W, Nunez EA . Evidence for changes in adrenal and testicular steroids during HIV infection. J Acquir Immune Defic Syndr 1992; 5: 841–846.

    Article  CAS  PubMed  Google Scholar 

  192. Merenich JA, McDermott MT, Asp AA, Harrison SM, Kidd GS . Evidence of endocrine involvement early in the course of human immunodeficiency virus infection. J Clin Endocrinol Metab 1990; 70: 566–571.

    Article  CAS  PubMed  Google Scholar 

  193. CDC. Male Circumcision. Atlanta, GA: CDC, 2013. Available from: http://www.cdc.gov/hiv/prevention/research/malecircumcision/.

  194. Weiss HA, Quigley MA, Hayes RJ . Male circumcision and risk of HIV infection in sub-Saharan Africa: a systematic review and meta-analysis. AIDS 2000; 14: 2361–2370.

    Article  CAS  PubMed  Google Scholar 

  195. Siegfried N, Muller M, Deeks J, Volmink J . Male circumcision for prevention of heterosexual acquisition of HIV in men (Review). Cochrane Database Syst Rev 2009; ( 2): CD003362.

  196. Hirbod T, Bailey RC, Agot K, Moses S, Ndinya-Achola J, Murugu R . Abundant expression of HIV target cells and C-type lectin receptors in the foreskin tissue of young Kenyan men. Am J Pathol 2010; 176: 2798–2805.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Patterson BK, Landay A, Siegel JN, Flener Z, Pessis D, Chaviano A . Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am J Pathol 2002; 161: 867–873.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Szabo R, Short RV . How does male circumcision protect against HIV infection? BMJ 2000; 320: 1592–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lisco A, Munawwar A, Introini A, Vanpouille C, Saba E, Feng X . Semen of HIV-1-infected individuals: local shedding of herpesviruses and reprogrammed cytokine network. J Infect Dis 2012; 205: 97–105.

    Article  CAS  PubMed  Google Scholar 

  200. Sabatté J, Ceballos A, Raiden S, Vermeulen M, Nahmod K, Maggini J . Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J Virol 2007; 81: 13723–13734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Sabatte J, Wolfgang F, Ceballos A, Morelle W, Rodriguez Rodrigues C, Lenicov FR . Semen clusterin is a novel DC-SIGN ligand. J Immunol 2011; 187: 5299–5309.

    Article  CAS  PubMed  Google Scholar 

  202. Stax MJ, van Montforta T, Sprengerb RR, Melchersa M, Sandersa RW, van Leeuwen E . Mucin 6 in seminal plasma binds DC-SIGN and potently blocks dendritic cell mediated transfer of HIV-1 to CD4+ T-lymphocytes. Virology 2009; 391: 203–211.

    Article  CAS  PubMed  Google Scholar 

  203. Martellini JA, Cole AL, Venkataraman N, Quinn GA, Svoboda P, Gangrade BK . Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J 2009; 23: 3609–3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Arnold F, Schnella J, Zirafia O, Stürzela C, Meierb C, Weil T . Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol 2012; 86: 1244–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kim KA, Yolamanova M, Zirafi O, Roan NR, Staendker L, Forssmann WG . Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology 2010; 7: 55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Münch J, Rücker E, Ständker L, Adermann K, Goffinet C, Schindler M . Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 2007; 131: 1059–1071.

    Article  PubMed  CAS  Google Scholar 

  207. Roan NR, Müller JA, Liu H, Chu S, Arnold F, Stürzel CM . Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 2011; 10: 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Roan NR, Münch J, Arhel N, Mothes W, Neidleman J, Kobayashi A . The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol 2009; 83: 73–80.

    Article  CAS  PubMed  Google Scholar 

  209. Brogi A, Presentini R, Moretti E, Strazza M, Piomboni P, Costantino-Ceccarini E . New insights into the interaction between the gp120 and the HIV receptor in human sperm (human. sperm/gp120/galactoglycerolipid/antigalactosylceramide/seminolipid/spermatogonia). J Reprod Immunol 1998; 41: 213–231.

    Article  CAS  PubMed  Google Scholar 

  210. Gadella B et al. Glycolipids as potential binding sites for HIV: topology in the sperm plasma membrane in relation to the regulation of membrane fusion. J Reprod Immunol 1998; 41: 233–253.

    Article  CAS  PubMed  Google Scholar 

  211. Denny TN, Skurnick JH, Garcia A, Perez G, Passannante MR, Colon J . Lymphocyte immunoregulatory cells present in semen from human immunodeficiency virus (HIV)-infected individuals: a report from the HIV Heterosexual Transmission Study. Cytometry 1996; 26: 47–51.

    Article  CAS  PubMed  Google Scholar 

  212. Le Tortorec A, Le Grand R, Denis H, Satie AP, Mannioui K, Roques P . Infection of semen-producing organs by SIV during the acute and chronic stages of the disease. PLoS ONE 2008; 3: e1792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Politch JA, Mayer KH, Anderson DJ . Depletion of CD4+ T cells in semen during HIV infection and their restoration following antiretroviral therapy. J Acquir Immune Defic Syndr 1999; 50: 283.

    Article  Google Scholar 

  214. Bernard-Stoecklin S, Gommet C, Corneau AB, Guenounou S, Torres C, Dejucq-Rainsford N . Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques. PLoS Pathog 2013; 9: e1003810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Pudney J, Quayle AJ, Anderson DJ . Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod 2005; 73: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Ontario HIV Treatment Network (OHTN), the Canadian Foundation of AIDS Research (CANFAR) and the Canadian Institutes of Health Research (CIHR). CK is the recipient of an Applied HIV Research Chair Award from the OHTN. VHF is a recipient of an OHTN Studentship Award and currently holds a CIHR Frederick Banting and Charles Best Canada Graduate Scholarship Doctoral Award. The authors would like to thank the members of Kaushic Lab for the research contributions described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Kaushic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P., Kafka, J., Ferreira, V. et al. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol 11, 410–427 (2014). https://doi.org/10.1038/cmi.2014.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.41

Keywords

This article is cited by

Search

Quick links