Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The immunological underpinnings of vaccinations to prevent cytomegalovirus disease

Abstract

A universal cytomegalovirus (CMV) vaccination promises to reduce the burden of the developmental damage that afflicts up to 0.5% of live births worldwide. An effective vaccination that prevents transplacental transmission would reduce CMV congenital disease and CMV-associated still births and leave populations less susceptible to opportunistic CMV disease. Thus, a vaccination against this virus has long been recognized for the potential of enormous health-care savings because congenital damage is life-long and existing anti-viral options are limited. Vaccine researchers, industry leaders, and regulatory representatives have discussed the challenges posed by clinical efficacy trials that would lead to a universal CMV vaccine, reviewing the links between infection and disease, and identifying settings where disrupting viral transmission might provide a surrogate endpoint for disease prevention. Reducing the complexity of such trials would facilitate vaccine development. Children and adolescents are the targets for universal vaccination, with the expectation of protecting the offspring of immunized women. Given that a majority of females worldwide experience CMV infection during childhood, a universal vaccine must boost natural immunity and reduce transmission due to reactivation and re-infection as well as primary infection during pregnancy. Although current vaccine strategies recognize the value of humoral and cellular immunity, the precise mechanisms that act at the placental interface remain elusive. Immunity resulting from natural infection appears to limit rather than prevent reactivation of latent viruses and susceptibility to re-infection, leaving a challenge for universal vaccination to improve upon natural immunity levels. Despite these hurdles, early phase clinical trials have achieved primary end points in CMV seronegative subjects. Efficacy studies must be expanded to mixed populations of CMV-naive and naturally infected subjects to understand the overall efficacy and potential. Together with CMV vaccine candidates currently in clinical development, additional promising preclinical strategies continue to come forward; however, these face limitations due to the insufficient understanding of host defense mechanisms that prevent transmission, as well as the age-old challenges of reaching the appropriate threshold of immunogenicity, efficacy, durability and potency. This review focuses on the current understanding of natural and CMV vaccine-induced protective immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adler SP . Immunization to prevent congenital cytomegalovirus infection. Br Med Bull 2013; 107: 57–68.

    CAS  PubMed  Google Scholar 

  2. Griffiths P, Plotkin S, Mocarski E, Pass R, Schleiss M, Krause P et al. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine 2013; 31 Suppl 2: B197–B203.

    PubMed  Google Scholar 

  3. Krause PR, Bialek SR, Boppana SB, Griffiths PD, Laughlin CA, Ljungman P et al. Priorities for CMV vaccine development. Vaccine 2013; 32: 4–10.

    PubMed  PubMed Central  Google Scholar 

  4. Wang D, Fu TM . Progress on human cytomegalovirus vaccines for prevention of congenital infection and disease. Curr Opin Virol 2014; 6C: 13–23.

    Google Scholar 

  5. Boppana SB, Britt WJ . Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol (Clifton, NJ) 2014; 1119: 311–348.

    CAS  Google Scholar 

  6. Swanson EC, Schleiss MR . Congenital cytomegalovirus infection: new prospects for prevention and therapy. Pediatr Clin North Am 2013; 60: 335–349.

    PubMed  Google Scholar 

  7. McVoy MA . Cytomegalovirus vaccines. Clin Infect Dis 2013; 57 Suppl 4: S196–S199.

    PubMed  Google Scholar 

  8. Lanzieri TM, Bialek SR, Ortega-Sanchez IR, Gambhir M . Modeling the potential impact of vaccination on the epidemiology of congenital cytomegalovirus infection. Vaccine 2014; 32: 3780–3786.

    PubMed  PubMed Central  Google Scholar 

  9. Weller TH . The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. II. N Engl J Med 1971; 285: 267–274.

    CAS  PubMed  Google Scholar 

  10. Weller TH . The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. I. N Engl J Med. 1971; 285: 203–214.

    CAS  PubMed  Google Scholar 

  11. Stagno S, Britt W . Cytomegalovirus Infections. In: Remington JS, Klein JO, Wilson CB, Baker CJ, editors. Infectious Diseases of the Fetus and Newborn Infant. 6th ed. Philadelphia, PA: Elsevier Saunders, 2006: 739–781.

    Google Scholar 

  12. Alford CA, Britt WJ . Cytomegalovirus. In: Fields BN, Knipe DM, Howley PM, editors. Fields Virology. 3rd ed. New York: Lippincott-Raven Publishers, 1996: 2493–2534.

    Google Scholar 

  13. Cannon MJ, Schmid DS, Hyde TB . Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 2010; 20: 202–213.

    PubMed  Google Scholar 

  14. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK . The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev 2013; 26: 86–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kenneson A, Cannon MJ . Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 2007; 17: 253–276.

    PubMed  Google Scholar 

  16. Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE Jr, Cannon MJ . Cytomegalovirus seroprevalence and childhood sources of infection: a population-based study among pre-adolescents in the United States. J Clin Virol 2008; 43: 266–271.

    PubMed  Google Scholar 

  17. Adler SP . Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med 1989; 321: 1290–1296.

    CAS  PubMed  Google Scholar 

  18. Joseph SA, Beliveau C, Muecke CJ, Rahme E, Soto JC, Flowerdew G et al. Cytomegalovirus as an occupational risk in daycare educators. Paediatr Child Health 2006; 11: 401–407.

    PubMed  PubMed Central  Google Scholar 

  19. Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE Jr, Cannon MJ . Influence of sexual activity on cytomegalovirus seroprevalence in the United States, 1988–1994. Sex Transm Dis 2008; 35: 472–479.

    PubMed  Google Scholar 

  20. Cannon MJ, Westbrook K, Levis D, Schleiss MR, Thackeray R, Pass RF . Awareness of and behaviors related to child-to-mother transmission of cytomegalovirus. Prev Med 2012; 54: 351–357.

    PubMed  PubMed Central  Google Scholar 

  21. Finney JW, Miller KM, Adler SP . Changing protective and risky behaviors to prevent child-to-parent transmission of cytomegalovirus. J Appl Behav Anal 1993; 26: 471–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mocarski ES Jr, Shenk T, Griffith P, Pass RF . Cytomegaloviruses. In: Knipe DM, Howley PM, editors. Fields Virology. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2013: 1960–2014.

    Google Scholar 

  23. Ross DS, Rasmussen SA, Cannon MJ, Anderson B, Kilker K, Tumpey A et al. Obstetrician/gynecologists' knowledge, attitudes, and practices regarding prevention of infections in pregnancy. J Womens Health (Larchmt) 2009; 18: 1187–1193.

    Google Scholar 

  24. Fowler KB, Stagno S, Pass RF . Maternal immunity and prevention of congenital cytomegalovirus infection. J Am Med Assoc 2003; 289: 1008–1011.

    Google Scholar 

  25. Ross SA, Fowler KB, Ashrith G, Stagno S, Britt WJ, Pass RF et al. Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J Pediatr 2006; 148: 332–336.

    PubMed  Google Scholar 

  26. Plotkin SA . Natural vs vaccine-acquired immunity to cytomegalovirus. J Am Med Assoc 2003; 290: 1709; author reply 1709.

    CAS  Google Scholar 

  27. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ . Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 2001; 344: 1366–1371.

    CAS  PubMed  Google Scholar 

  28. Plotkin SA, Starr SE, Friedman HM, Gonczol E, Weibel RE . Protective effects of Towne cytomegalovirus vaccine against low-passage cytomegalovirus administered as a challenge. J Infect Dis 1989; 159: 860–865.

    CAS  PubMed  Google Scholar 

  29. Adler SP, Starr SE, Plotkin SA, Hempfling SH, Buis J, Manning ML et al. Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J Infect Dis 1995; 171: 26–32.

    CAS  PubMed  Google Scholar 

  30. Yamamoto AY, Mussi-Pinhata MM, Boppana SB, Novak Z, Wagatsuma VM, Oliveira Pde F et al. Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am J Obstet Gynecol 2010; 202: 297.e1–297.e8.

    Google Scholar 

  31. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 2005; 202: 673–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Riddell SR, Greenberg PD . T cell therapy of human CMV and EBV infection in immunocompromised hosts. Rev Med Virol 1997; 7: 181–192.

    CAS  PubMed  Google Scholar 

  33. Daley-Bauer LP, Mocarski ES . Myeloid cell recruitment and function in cytomegalovirus immunity and pathogenesis. In: Reddehase MJ, editor. Cytomegaloviruses: From Molecular Pathogenesis to Intervention. Norfolk: Caister Scientific Press, 2013: 363–373.

    Google Scholar 

  34. Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL . Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 2000; 182: 1761–1764.

    CAS  PubMed  Google Scholar 

  35. Dasari V, Smith C, Khanna R . Recent advances in designing an effective vaccine to prevent cytomegalovirus-associated clinical diseases. Expert Rev Vaccines 2013; 12: 661–676.

    CAS  PubMed  Google Scholar 

  36. Muller WJ, Jones CA, Koelle DM . Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn. Curr Immunol Rev 2010; 6: 38–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Slobedman B, Mocarski ES . Quantitative analysis of latent human cytomegalovirus. J Virol 1999; 73: 4806–4812.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cook CH, Trgovcich J . Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges. Antiviral Res 2011; 90: 151–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L . Viral and bacterial pathogens at the maternal–fetal interface. J Infect Dis 2004; 190: 826–834.

    PubMed  Google Scholar 

  40. Cannon MJ, Hyde TB, Schmid DS . Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol 2011; 21: 240–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McIver CJ, Jacques CF, Chow SS, Munro SC, Scott GM, Roberts JA et al. Development of multiplex PCRs for detection of common viral pathogens and agents of congenital infections. J Clin Microbiol 2005; 43: 5102–5110.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pereira L, Maidji E . Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblasts converge. Curr Top Microbiol Immunol 2008; 325: 383–395.

    CAS  PubMed  Google Scholar 

  43. Gabrielli L, Bonasoni MP, Santini D, Piccirilli G, Chiereghin A, Guerra B et al. Human fetal inner ear involvement in congenital cytomegalovirus infection. Acta Neuropathol Commun 2013; 1: 63.

    PubMed  PubMed Central  Google Scholar 

  44. Teissier N, Delezoide AL, Mas AE, Khung-Savatovsky S, Bessieres B, Nardelli J et al. Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol 2011; 122: 763–774.

    PubMed  Google Scholar 

  45. Gabrielli L, Bonasoni MP, Santini D, Piccirilli G, Chiereghin A, Petrisli E et al. Congenital cytomegalovirus infection: patterns of fetal brain damage. Clin Microbiol Infect 2012; 18: E419–E427.

    CAS  PubMed  Google Scholar 

  46. Gabrielli L, Bonasoni MP, Lazzarotto T, Lega S, Santini D, Foschini MP et al. Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol 2009; 46 Suppl 4: S16–S21.

    PubMed  Google Scholar 

  47. Chandler SH, Holmes KK, Wentworth BB, Gutman LT, Wiesner PJ, Alexander ER et al. The epidemiology of cytomegaloviral infection in women attending a sexually transmitted disease clinic. J Infect Dis 1985; 152: 597–605.

    CAS  PubMed  Google Scholar 

  48. Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA . The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992; 326: 663–667.

    CAS  PubMed  Google Scholar 

  49. Colugnati FA, Staras SA, Dollard SC, Cannon MJ . Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect Dis 2007; 7: 71.

    PubMed  PubMed Central  Google Scholar 

  50. Mussi-Pinhata MM, Yamamoto AY, Moura Brito RM, de Lima Isaac M, de Carvalho e Oliveira PF, Boppana S et al. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin Infect Dis 2009; 49: 522–528.

    PubMed  Google Scholar 

  51. Sharland M, Luck S, Griffiths P, Cotton M . Antiviral therapy of CMV disease in children. Adv Exp Med Biol 2011; 697: 243–260.

    PubMed  Google Scholar 

  52. Bale JF Jr . Congenital cytomegalovirus infection. Handbook Clin Neurol 2014; 123: 319–326.

    Google Scholar 

  53. Nigro G, Adler SP, La Torre R, Best AM . Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 2005; 353: 1350–1362.

    CAS  PubMed  Google Scholar 

  54. Maidji E, Nigro G, Tabata T, McDonagh S, Nozawa N, Shiboski S et al. Antibody treatment promotes compensation for human cytomegalovirus-induced pathogenesis and a hypoxia-like condition in placentas with congenital infection. Am J Pathol 2010; 177: 1298–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Adler SP, Nigro G . Findings and conclusions from CMV hyperimmune globulin treatment trials. J Clin Virol 2009; 46 Suppl 4: S54–S57.

    PubMed  Google Scholar 

  56. Revello MG, Fornara C, Arossa A, Zelini P, Lilleri D . Role of human cytomegalovirus (HCMV)-specific antibody in HCMV-infected pregnant women. Early Hum Dev 2014; 90 Suppl 1: S32–S34.

    PubMed  Google Scholar 

  57. Pereira L, Petitt M, Tabata T . Cytomegalovirus infection and antibody protection of the developing placenta. Clin Infect Dis 2013; 57 Suppl 4: S174–S177.

    PubMed  Google Scholar 

  58. Adler SP, Nigro G, Pereira L . Recent advances in the prevention and treatment of congenital cytomegalovirus infections. Semin Perinatol 2007; 31: 10–18.

    PubMed  Google Scholar 

  59. Adler SP, Nigro G . Prevention of maternal–fetal transmission of cytomegalovirus. Clin Infect Dis 2013; 57 Suppl 4: S189–S192.

    PubMed  Google Scholar 

  60. Schleiss MR . Cytomegalovirus in the neonate: immune correlates of infection and protection. Clin Dev Immunol 2013; 2013: 501801.

    PubMed  PubMed Central  Google Scholar 

  61. Lilleri D, Fornara C, Chiesa A, Caldera D, Alessandrino EP, Gerna G . Human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 2008; 93: 248–256.

    PubMed  Google Scholar 

  62. Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G . Development of human cytomegalovirus-specific T cell immunity during primary infection of pregnant women and its correlation with virus transmission to the fetus. J Infect Dis 2007; 195: 1062–1070.

    PubMed  Google Scholar 

  63. Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E et al. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128–130–131 complex during primary infection. PLoS One 2013; 8: e59863.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Burny W, Liesnard C, Donner C, Marchant A . Epidemiology, pathogenesis and prevention of congenital cytomegalovirus infection. Expert Rev Anti Infect Ther 2004; 2: 881–894.

    PubMed  Google Scholar 

  65. Miles DJ, van der Sande M, Jeffries D, Kaye S, Ismaili J, Ojuola O et al. Cytomegalovirus infection in gambian infants leads to profound CD8 T-cell differentiation. J Virol 2007; 81: 5766–5776.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaye S, Miles D, Antoine P, Burny W, Ojuola B, Kaye P et al. Virological and immunological correlates of mother-to-child transmission of cytomegalovirus in The Gambia. J Infect Dis 2008; 197: 1307–1314.

    PubMed  Google Scholar 

  67. Miles DJ, Sande M, Kaye S, Crozier S, Ojuola O, Palmero MS et al. CD4+ T cell responses to cytomegalovirus in early life: a prospective birth cohort study. J Infect Dis 2008; 197: 658–662.

    PubMed  Google Scholar 

  68. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, van Rysselberge M et al. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J Exp Med 2010; 207: 807–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dauby N, Kummert C, Lecomte S, Liesnard C, Delforge ML, Donner C et al. Primary human cytomegalovirus infection induces the expansion of virus-specific activated and atypical memory B cells. J Infect Dis 2014; 10: 1275–1285.

    Google Scholar 

  70. Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 2004; 172: 3260–3267.

    CAS  PubMed  Google Scholar 

  71. Arvin AM, Fast P, Myers M, Plotkin S, Rabinovich R . Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. Clin Infect Dis 2004; 39: 233–239.

    PubMed  Google Scholar 

  72. Markowitz LE, Hariri S, Lin C, Dunne EF, Steinau M, McQuillan G et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J Infect Dis 2013; 208: 385–393.

    CAS  PubMed  Google Scholar 

  73. Ali H, Donovan B, Wand H, Read TR, Regan DG, Grulich AE et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ 2013; 346: f2032.

    PubMed  Google Scholar 

  74. Pass RF . Development and evidence for efficacy of CMV glycoprotein B vaccine with MF59 adjuvant. J Clin Virol 2009; 46 Suppl 4: S73–S76.

    PubMed  Google Scholar 

  75. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD . Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science (New York, NY) 1992; 257: 238–241.

    CAS  Google Scholar 

  76. Snydman DR . Historical overview of the use of cytomegalovirus hyperimmune globulin in organ transplantation. Transpl Infect Dis 2001; 3 Suppl 2: 6–13.

    CAS  PubMed  Google Scholar 

  77. Ishibashi K, Tokumoto T, Tanabe K, Shirakawa H, Hashimoto K, Kushida N et al. Association of the outcome of renal transplantation with antibody response to cytomegalovirus strain-specific glycoprotein H epitopes. Clin Infect Dis 2007; 45: 60–67.

    CAS  PubMed  Google Scholar 

  78. Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L, Campanini G et al. Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. J Gen Virol 2008; 89: 853–865.

    CAS  PubMed  Google Scholar 

  79. Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG et al. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128–131A complex. J Virol 2010; 84: 1005–1013.

    CAS  PubMed  Google Scholar 

  80. Lilleri D, Kabanova A, Lanzavecchia A, Gerna G . Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128–130–131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol 2012; 32: 1324–1331.

    CAS  PubMed  Google Scholar 

  81. Britt WJ, Mach M . Human cytomegalovirus glycoproteins. Intervirology 1996; 39: 401–412.

    CAS  PubMed  Google Scholar 

  82. Urban M, Klein M, Britt WJ, Hassfurther E, Mach M . Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 1996; 77: 1537–1547.

    CAS  PubMed  Google Scholar 

  83. Shimamura M, Mach M, Britt WJ . Human cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response. J Virol 2006; 80: 4591–4600.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fouts AE, Chan P, Stephan JP, Vandlen R, Feierbach B . Antibodies against the gH/gL/UL128/UL130/UL131 complex comprise the majority of the anti-cytomegalovirus (anti-CMV) neutralizing antibody response in CMV hyperimmune globulin. J Virol 2012; 86: 7444–7447.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weisblum Y, Panet A, Zakay-Rones Z, Haimov-Kochman R, Goldman-Wohl D, Ariel I et al. Modeling of human cytomegalovirus maternal–fetal transmission in a novel decidual organ culture. J Virol 2011; 85: 13204–13213.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zydek M, Petitt M, Fang-Hoover J, Adler B, Kauvar LM, Pereira L et al. HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex. Viruses 2014; 6: 1346–1364.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Polilli E, Parruti G, D'Arcangelo F, Tracanna E, Clerico L, Savini V et al. Preliminary evaluation of the safety and efficacy of standard intravenous immunoglobulins in pregnant women with primary cytomegalovirus infection. Clin Vaccine Immunol 2012; 19: 1991–1993.

    PubMed  PubMed Central  Google Scholar 

  88. Revello MG, Lazzarotto T, Guerra B, Spinillo A, Ferrazzi E, Kustermann A et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med 2014; 370: 1316–1326.

    CAS  PubMed  Google Scholar 

  89. Waller EC, Day E, Sissons JG, Wills MR . Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 2008; 197: 83–96.

    PubMed  Google Scholar 

  90. Riddell SR, Reusser P, Greenberg PD . Cytotoxic T cells specific for cytomegalovirus: a potential therapy for immunocompromised patients. Rev Infect Dis 1991; 11: S966–S973.

    Google Scholar 

  91. Lilleri D, Fornara C, Revello MG, Gerna G . Human cytomegalovirus-specific memory CD8+ and CD4+ T cell differentiation after primary infection. J Infect Dis 2008; 198: 536–543.

    PubMed  Google Scholar 

  92. Benedict CA . A CMV vaccine: TREATing despite the TRICKs. Expert Rev Vaccines 2013; 12: 1235–1237.

    PubMed  PubMed Central  Google Scholar 

  93. Plotkin SA . Vaccines: facing complex problems with the promise of immunology. Expert Rev Vaccines 2014; 13: 939–941.

    CAS  PubMed  Google Scholar 

  94. Schleiss MR . Developing a vaccine against congenital cytomegalovirus (CMV) infection: what have we learned from animal models? Where should we go next? Future Virol 2013; 8: 1161–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lilja AE, Mason PW . The next generation recombinant human cytomegalovirus vaccine candidates—beyond gB. Vaccine 2012; 30: 6980–6990.

    CAS  PubMed  Google Scholar 

  96. Plotkin SA, Huang ES . Cytomegalovirus vaccine virus (Towne strain) does not induce latency. J Infect Dis 1985; 152: 395–397.

    CAS  PubMed  Google Scholar 

  97. Plotkin SA, Smiley ML, Friedman HM, Starr SE, Fleisher GR, Wlodaver C et al. Prevention of cytomegalovirus disease by Towne strain live attenuated vaccine. Birth Defects Orig Artic Ser 1984; 20: 271–287.

    CAS  PubMed  Google Scholar 

  98. Plotkin SA, Smiley ML, Friedman HM, Starr SE, Fleisher GR, Wlodaver C et al. Towne-vaccine-induced prevention of cytomegalovirus disease after renal transplants. Lancet 1984; 1: 528–530.

    CAS  PubMed  Google Scholar 

  99. Plotkin SA, Starr SE, Friedman HM, Gonczol E, Brayman K . Vaccines for the prevention of human cytomegalovirus infection. Rev Infect Dis 1990; 12 Suppl 7: S827–S838.

    CAS  PubMed  Google Scholar 

  100. Adler SP, Hempfling SH, Starr SE, Plotkin SA, Riddell S . Safety and immunogenicity of the Towne strain cytomegalovirus vaccine. Pediatr Infect Dis J 1998; 17: 200–206.

    CAS  PubMed  Google Scholar 

  101. Neff BJ, Weibel RE, Buynak EB, McLean AA, Hilleman MR . Clinical and laboratory studies of live cytomegalovirus vaccine Ad-169. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 1979; 160: 32–37.

    CAS  Google Scholar 

  102. Schleiss MR, Heineman TC . Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 2005; 4: 381–406.

    CAS  PubMed  Google Scholar 

  103. Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF . Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 2011; 7: e1001344.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Renzette N, Gibson L, Bhattacharjee B, Fisher D, Schleiss MR, Jensen JD et al. Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection. PLoS Genet 2013; 9: e1003735.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gorzer I, Kerschner H, Redlberger-Fritz M, Puchhammer-Stockl E . Human cytomegalovirus (HCMV) genotype populations in immunocompetent individuals during primary HCMV infection. J Clin Virol 2010; 48: 100–103.

    PubMed  Google Scholar 

  106. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR . Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 1996; 70: 78–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G et al. A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis 2006; 193: 1350–1360.

    CAS  PubMed  Google Scholar 

  108. Patrone M, Secchi M, Fiorina L, Ierardi M, Milanesi G, Gallina A . Human cytomegalovirus UL130 protein promotes endothelial cell infection through a producer cell modification of the virion. J Virol 2005; 79: 8361–8373.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang D, Shenk T . Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 2005; 79: 10330–10338.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ, Baluchova K et al. Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 2010; 91: 1535–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S et al. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 2010; 120: 3191–3208.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gerna G, Percivalle E, Sarasini A, Baldanti F, Campanini G, Revello MG . Rescue of human cytomegalovirus strain AD169 tropism for both leukocytes and human endothelial cells. J Gen Virol 2003; 84: 1431–1436.

    CAS  PubMed  Google Scholar 

  113. Fu TM, Wang D, Freed DC, Tang A, Li F, He X et al. Restoration of viral epithelial tropism improves immunogenicity in rabbits and rhesus macaques for a whole virion vaccine of human cytomegalovirus. Vaccine 2012; 30: 7469–7474.

    CAS  PubMed  Google Scholar 

  114. Freed DC, Tang Q, Tang A, Li F, He X, Huang Z et al. Pentameric complex of viral glycoprotein H is the primary target for potent neutralization by a human cytomegalovirus vaccine. Proc Natl Acad Sci USA 2013; 110: E4997–E5005.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC et al. Immune clearance of highly pathogenic SIV infection. Nature 2013; 502: 100–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013; 340: 1237874.

    PubMed  Google Scholar 

  117. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 2010; 328: 102–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Deere JD, Barry PA . Using the nonhuman primate model of HCMV to guide vaccine development. Viruses 2014; 6: 1483–1501.

    PubMed  PubMed Central  Google Scholar 

  119. Barry PA, William Chang W . Primate betaherpesviruses. In: Arvin AM, Campadelli-Fiume G, Mocarski ES, Moore PS, Roizman B, Whitley R, et al., editors. Human Herpesviruses: Biology, Therapy and Immunoprophylaxis. 2011/02/25 ed. Cambridge: Cambridge Press, 2007: 1051–1075.

    Google Scholar 

  120. Pass RF, Zhang C, Evans A, Simpson T, Andrews W, Huang ML et al. Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med 2009; 360: 1191–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Griffiths PD, Stanton A, McCarrell E, Smith C, Osman M, Harber M et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 2011; 377: 1256–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsai TF . Fluad(R)-MF59(R)-adjuvanted influenza vaccine in older adults. Infect Chemother 2013; 45: 159–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomized, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis 2012; 12: 290–299.

    CAS  PubMed  Google Scholar 

  124. Reap EA, Morris J, Dryga SA, Maughan M, Talarico T, Esch RE et al. Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus. Vaccine 2007; 25: 7441–7449.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hubby B, Talarico T, Maughan M, Reap EA, Berglund P, Kamrud KI et al. Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 2007; 25: 8180–8189.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 2009; 28: 484–493.

    CAS  PubMed  Google Scholar 

  127. Wen Y, Monroe J, Linton C, Archer J, Beard CW, Barnett SW et al. Human cytomegalovirus gH/gL/UL128/UL130/UL131A complex elicits potently neutralizing antibodies in mice. Vaccine 2014; 32: 3796–3804.

    CAS  PubMed  Google Scholar 

  128. Loomis RJ, Lilja AE, Monroe J, Balabanis KA, Brito LA, Palladino G et al. Vectored co-delivery of human cytomegalovirus gH and gL proteins elicits potent complement-independent neutralizing antibodies. Vaccine 2013; 31: 919–926.

    CAS  PubMed  Google Scholar 

  129. Wussow F, Yue Y, Martinez J, Deere JD, Longmate J, Herrmann A et al. A vaccine based on the rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J Virol 2013; 87: 1322–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mach M . Antibody-mediated neutralization of infectivity. In: Reddehase MJ, editor. Cytomegaloviruses: Molecular Biology and Immunology. Norfolk: Caister Scientific Press, 2006: 265–284.

    Google Scholar 

  131. Axelsson F, Adler SP, Lamarre A, Ohlin M . Humoral immunity targeting site I of antigenic domain 2 of glycoprotein B upon immunization with different cytomegalovirus candidate vaccines. Vaccine 2007; 26: 41–46.

    CAS  PubMed  Google Scholar 

  132. Ohlin M . A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol Immunol 2014; 60: 95–102.

    CAS  PubMed  Google Scholar 

  133. Spindler N, Rucker P, Potzsch S, Diestel U, Sticht H, Martin-Parras L et al. Characterization of a discontinuous neutralizing epitope on glycoprotein B of human cytomegalovirus. J Virol 2013; 87: 8927–8939.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cayatte C, Schneider-Ohrum K, Wang Z, Irrinki A, Nguyen N, Lu J et al. Cytomegalovirus vaccine strain Towne-derived dense bodies induce broad cellular immune responses and neutralizing antibodies that prevent infection of fibroblasts and epithelial cells. J Virol 2013; 87: 11107–11120.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kirchmeier M, Fluckiger AC, Soare C, Bozic J, Ontsouka B, Ahmed T et al. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity. Clin Vaccine Immunol 2014; 21: 174–180.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Institutes of Health Grants R01 AI030363 and AI020211 (ESM) and Center for AIDS Research, Emory University School of Medicine (ALM). The ideas expressed here are those of the authors and do not necessarily reflect the NIH or PHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Mocarski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louise McCormick, A., Mocarski, E. The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell Mol Immunol 12, 170–179 (2015). https://doi.org/10.1038/cmi.2014.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.120

Keywords

This article is cited by

Search

Quick links