Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice

Abstract

Flagellin is a potent activator of a broad range of cell types that are involved in innate and adaptive immunity. Therefore, it is a good adjuvant candidate for vaccines, and it might function as a biological protectant against both major acute radiation syndrome during cancer radiotherapy and a mitigator of radiation emergencies. However, accumulating evidence has implicated flagellin in the occurrence of some inflammatory diseases, such as acute lung inflammation, cardiovascular collapse and inflammatory bowel disease. The aim of this study was to elucidate whether only flagellin-TLR5 signaling activation plays a role in the pathophysiology of liver or whether some other flagellin activity also contributes to liver injury either via bacterial infections or during clinical applications. Recombinant flagellin proteins with or without TLR5-stimulating activity were used to evaluate the role of flagellin-TLR5 signaling in liver injury in wild-type and TLR5 KO mice. Gross lesions and large areas of hepatocellular necrosis were observed in liver tissue 12 h after the intraperitoneal administration of 100 or 200 µg flagellin (FliC) in a dose- and time-dependent manner in wild-type mice, but not in TLR5 KO mice. Deletion of the N-terminal or TLR5 binding domain of flagellin inhibited flagellin-induced inflammatory responses and the subsequent acute liver function abnormality and damage. These data confirmed that flagellin is an essential determinant of liver injury and demonstrated that the over-activation of TLR5 signaling by high-dose flagellin caused acute inflammatory responses, neutrophil accumulation and oxidative stress in the liver, which contributes to the progression and severity of flagellin-induced liver injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. The innate immune response to bacterial-flagellin is mediated by Toll-like receptor 5. Nature 2001; 410: 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011; 477: 596–600.

    Article  CAS  PubMed  Google Scholar 

  3. Kofoed EM, Vance RE . Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477: 592–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramos HC, Rumbo M, Sirard JC . Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 2004; 12: 509–517.

    Article  CAS  PubMed  Google Scholar 

  5. Berin MC, Darfeuille-Michaud A, Egan LJ, Miyamoto Y, Kagnoff MF . Role of EHEC O157: H7 virulence factors in the activation of intestinal epithelial cell NF-kappa B and MAP kinase pathways and the upregulated expression of interleukin 8. Cell Microbiol 2002; 4: 635–647.

    Article  CAS  PubMed  Google Scholar 

  6. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D et al. An agonist of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320: 226–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinon F, Burns K, Tschopp J . The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426.

    Article  CAS  PubMed  Google Scholar 

  8. Bergsbaken T, Fink SL, Cookson BT . Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donnelly MA . Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of Toll-like receptor 5. J Biol Chem 2002; 277: 40456–40461.

    Article  CAS  PubMed  Google Scholar 

  10. Mortimer C, Gharbia SE, Logan JM, Peters TM, Arnold C . Flagellin gene sequence evolution in Salmonella. Infect Genet Evol 2007; 7: 411–415.

    Article  CAS  PubMed  Google Scholar 

  11. Malapaka RR, Adebayo LO, Tripp BC . A deletion variant study of the functional role of the Salmonella flagellin hypervariable domain region in motility. J Mol Biol 2007; 365: 1102–1116.

    Article  CAS  PubMed  Google Scholar 

  12. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL et al. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335: 859–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith KD . Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature 2003; 4: 1247–1253.

    CAS  Google Scholar 

  14. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9: 1171–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mizel SB and Bates JT . Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 2010; 185: 5677–5682.

    Article  CAS  PubMed  Google Scholar 

  16. Vijay-Kumar M, Aitken JD, Sanders CJ, Frias A, Sloane VM, Xu J et al. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J Immunol 2008; 180: 8280–8285.

    Article  CAS  PubMed  Google Scholar 

  17. Rolli J, Loukili N, Levrand S, Rosenblatt-Velin N, Rignault-Clerc S, Waeber B et al. Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice. Crit Care 2010; 14: R160.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113: 1296–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhee SH, Im E, Riegler M, Kokkotou E, O'Brien M, Pothoulakis C . Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc Natl Acad Sci USA 2005; 102: 13610–13615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liaudet L, Szabó C, Evgenov OV, Murthy KG, Pacher P, Virág L et al. Flagellin from Gram-negative bacteria is a potent mediator of acute pulmonary inflammation in sepsis. Shock 2003; 19: 131–137.

    Article  CAS  PubMed  Google Scholar 

  21. Blohmke CJ, Victor RE, Hirschfeld AF, Elias IM, Hancock DG, Lane CR et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol 2008; 180: 7764–7773.

    Article  CAS  PubMed  Google Scholar 

  22. Rolli J, Rosenblatt-Velin N, Li J, Loukili N, Levrand S, Pacher P et al. Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction. PLoS One 2010; 5: e12687.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liaudet L, Murthy KG, Mabley JG, Pacher P, Soriano FG, Salzman AL et al. Comparison of inflammation, organ damage, and oxidant stress induced by Salmonella enterica serovar Muenchen flagellin and serovar enteritidis lipopolysaccharide. Infect Immun 2002; 70: 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C et al. Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 2006; 43: 989–1000.

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y et al. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum Vaccin Immunother 2013; 9: 1084–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO et al. Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol 2009; 16: 21–28.

    Article  CAS  PubMed  Google Scholar 

  27. Dalpke AH, Lehner MD, Hartung T, Heeg K . Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 2005; 116: 203–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W et al. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem Biophys Res Commun 2010; 392: 582–587.

    Article  CAS  PubMed  Google Scholar 

  29. Buzzo CL, Campopiano JC, Massis LM, Lage SL, Cassado AA, Leme-Souza R et al. A novel pathway for inducible nitric-oxide synthase activation through inflammasomes. J Biol Chem 2010; 285: 32087–32095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang JY, Zhang E, Liu F, Zhang Y, Zhong M, Li Y et al. Flagellins of Salmonella typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages. J Innate Immun 2014; 6: 47–57.

    Article  CAS  PubMed  Google Scholar 

  31. Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci USA 2013; 110: E1857–E1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simberg D, Weisman S, Talmon Y, Barenholz Y . DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 2004; 21: 257–317.

    Article  CAS  PubMed  Google Scholar 

  33. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE . Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leuk Biol 2008; 83: 64–70.

    Article  CAS  Google Scholar 

  34. Spapen H, Zhang HB, Vincent JL . Potential therapeutic value of lazaroids in endotoxemia and other forms of sepsis. Shock 1997; 8: 321–327.

    Article  CAS  PubMed  Google Scholar 

  35. Cederbaum AI, Lu YK, Wu DF . Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009. 83: 519–548.

    Article  CAS  PubMed  Google Scholar 

  36. Lai MM . Hepatitis C virus proteins: direct link to hepatic oxidative stress, steatosis, carcinogenesis and more. Gastroenterology 2002; 122: 568–571.

    Article  PubMed  Google Scholar 

  37. Stancliffe RA, Thorpe T, Zemel MB . Dairy attentuates oxidative and inflammatory stress in metabolic syndrome. Am J Clin Nutr 2011; 94: 422–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sebastiani G, Leveque G, Larivière L, Laroche L, Skamene E, Gros P et al. Cloning and characterization of the murine Toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 2000; 64: 230–240.

    Article  CAS  PubMed  Google Scholar 

  39. Schwabe RF, Seki E, Brenner DA . Toll-like receptor signaling in the liver. Gastroenterology 2006; 130: 1886–1900.

    Article  CAS  PubMed  Google Scholar 

  40. Seki E, Brenner DA . Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48: 322–335.

    Article  CAS  PubMed  Google Scholar 

  41. Ring A, Stremmel W . The hepatic microvascular responses to sepsis. Semin Thromb Hemost 2000; 26: 589–594.

    Article  CAS  PubMed  Google Scholar 

  42. Sadallah F, Brighouse G, del Giudice G, Drager-Dayal R, Hocine M, Lambert PH . Production of specific monoclonal-antibodies to Salmonella-typhi flagellin and possible application to immunodiagnosis of typhoid-fever. J Infect Dis 1990; 161: 59–64.

    Article  CAS  PubMed  Google Scholar 

  43. Villa P, Saccani A, Sica A, Ghezzi P . Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. J Infect Dis 2002; 185: 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan LY, Kaplowitz N . Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 2009; 30: 29–41.

    Article  CAS  PubMed  Google Scholar 

  45. Knight TR, Ho YS, Farhood A, Jaeschke H . Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther 2002; 303: 468–475.

    Article  CAS  PubMed  Google Scholar 

  46. Cazanave S, Berson A, Haouzi D, Vadrot N, Fau D, Grodet A et al. High hepatic glutathione stores alleviate Fas-induced apoptosis in mice. J Hepatol 2007; 46: 858–868.

    Article  CAS  PubMed  Google Scholar 

  47. Ramaiah S, Jaeschke H . Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2007; 35: 757–766.

    Article  CAS  PubMed  Google Scholar 

  48. Hao J, Zhang C, Liang T, Song J, Hou G . rFliC prolongs allograft survival in association with the activation of recipient Tregs in a TLR5-dependent manner. Cell Mol Immunol 2014; 11: 206–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National S&T Major Project on Major Infectious Diseases (Grant 2012ZX10001-008 and 2008ZX10001-010), the National Basic Research Program of China (973 Program) (Grant 2012CB518904) from the Ministry of Science and Technology of the People's Republic of China, and the National Natural Science Foundation of China (Grant 81202381). We sincerely thank Dr George Dacai Liu for his critical comments and revision of the article. We are thankful to the Core Facility and Technical Support, Wuhan Institute of Virology and Xuefang An for valuable assistance in the animal studies, as well as Ying Sun, Rong Bao and Benxia He for their help with the sample collection.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, F., Yang, J. et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol 12, 729–742 (2015). https://doi.org/10.1038/cmi.2014.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.110

Keywords

This article is cited by

Search

Quick links