Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Impaired NK cell antiviral cytokine response against influenza virus in small-for-gestational-age neonates

Abstract

The neonates, particularly small-for-gestational-age (SGA) ones, are susceptible to various microbial infections. Natural killer (NK) cells are critical components of host innate immunity system and the main source of the inflammatory cytokines, which provide critical protection during the early phase of viral infections before the development of an appropriate adaptive immune response. However, little is known about the antiviral effects of NK cells in neonates especially the SGA population. Herein, a prospective descriptive study was performed to determine the differences of NK cell immunity among adults, appropriate-for gestational-age (AGA) and SGA neonates. Adults have much higher NK cell number in peripheral blood than that in cord blood from neonates. In response to influenza virus stimulation, neonatal NK cells, especially SGA baby cells, expressed significantly lower antiviral cytokines including perforin, interferon (IFN)-γ and tumor-necrosis factor (TNF)-α responses than adult NK cells. In addition, the antiviral cytokine responses of NK cells were positively correlated with neonatal birth weight. Our data suggested that the depressed antiviral activity and less frequency of NK cells are likely to be responsible for the high susceptibility to microbial infection in neonates, at least in part. Improving the function of innate immunity may provide a new way to defend virus infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gluckman PD, Harding JE . The physiology and pathophysiology of intrauterine growth retardation. Horm Res 1997; 48( Suppl 1): 11–16.

    Article  CAS  PubMed  Google Scholar 

  2. Pulver LS, Guest-Warnick G, Stoddard GJ, Byington CL, Young PC . Weight for gestational age affects the mortality of late preterm infants. Pediatrics 2009; 123: e1072–e1077.

    Article  PubMed  Google Scholar 

  3. Young PC, Glasgow TS, Li X, Guest-Warnick G, Stoddard G . Mortality of late-preterm (near-term) newborns in Utah. Pediatrics 2007; 119: e659–e665.

    Article  PubMed  Google Scholar 

  4. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM . Aging of the innate immune system. Curr Opin Immunol 2010; 22: 507–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Garff-Tavernier M, Béziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debré P et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 2010; 9: 527–535.

    Article  CAS  PubMed  Google Scholar 

  6. Lanier LL . Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 2008; 8: 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giannoni E, Guignard L, Knaup Reymond M, Perreau M, Roth-Kleiner M, Calandra T et al. Estradiol and progesterone strongly inhibit the innate immune response of mononuclear cells in newborns. Infect Immun 2011; 79: 2690–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H . Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 2001; 75: 11025–11033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angelone DF, Wessels MR, Coughlin M, Suter EE, Valentini P, Kalish LA et al. Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-alpha production in vitro and in vivo. Pediatr Res 2006; 60: 205–209.

    Article  CAS  PubMed  Google Scholar 

  10. Krampera M, Tavecchia L, Benedetti F, Nadali G, Pizzolo G . Intracellular cytokine profile of cord blood T-, and NK- cells and monocytes. Haematologica 2000; 85: 675–679.

    CAS  PubMed  Google Scholar 

  11. Kubota K . Innate IFN-gamma production by subsets of natural killer cells, natural killer T cells and gammadelta T cells in response to dying bacterial-infected macrophages. Scand J Immunol 2010; 71: 199–209.

    Article  CAS  PubMed  Google Scholar 

  12. Strunk T, Currie A, Richmond P, Simmer K, Burgner D . Innate immunity in human newborn infants: prematurity means more than immaturity. J Matern Fetal Neonatal Med 2011; 24: 25–31.

    Article  PubMed  Google Scholar 

  13. Strunk T, Temming P, Gembruch U, Reiss I, Bucsky P, Schultz C . Differential maturation of the innate immune response in human fetuses. Pediatr Res 2004; 56: 219–226.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Li H, Mao H, Yu M, Feng T, Yang F et al. Vgamma9Vdelta2-T lymphocytes have impaired antiviral function in small-for-gestational-age and preterm neonates. Cell Mol Immunol 2013; in press.

  15. Qin G, Liu Y, Zheng J, Xiang Z, Ng IH, Malik Peiris JS et al. Phenotypic and functional characterization of human gammadelta T-cell subsets in response to influenza A viruses. J Infect Dis 2012; 205: 1646–1653.

    Article  CAS  PubMed  Google Scholar 

  16. Tu W, Zheng J, Liu Y, Sia SF, Liu M, Qin G et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med 2011; 208: 1511–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao Y, Zheng J, Han C, Jin J, Han H, Liu Y et al. Tyrosine kinase Btk is required for NK cell activation. J Biol Chem 2012; 287: 23769–23778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marodi L . Innate cellular immune responses in newborns. Clin Immunol 2006; 118: 137–144.

    Article  CAS  PubMed  Google Scholar 

  19. Claris O, Beltrand J, Levy-Marchal C . Consequences of intrauterine growth and early neonatal catch-up growth. Semin Perinatol 2010; 34: 207–210.

    Article  PubMed  Google Scholar 

  20. Neerhof MG, Thaete LG . The fetal response to chronic placental insufficiency. Semin Perinatol 2008; 32: 201–205.

    Article  PubMed  Google Scholar 

  21. Campos Alberto EJ, Shimojo N, Aoyagi M, Kohno Y . Differential effects of tumour necrosis factor-alpha and interleukin-12 on isopentenyl pyrophosphate-stimulated interferon-gamma production by cord blood Vgamma9 T cells. Immunology 2009; 127: 171–177.

    Article  PubMed  Google Scholar 

  22. Drohan L, Harding JJ, Holm B, Cordoba-Tongson E, Dekker CL, Holmes T et al. Selective developmental defects of cord blood antigen-presenting cell subsets. Hum Immunol 2004; 65: 1356–1369.

    Article  CAS  PubMed  Google Scholar 

  23. Lappalainen M, Roponen M, Pekkanen J, Huttunen K, Hirvonen MR . Maturation of cytokine-producing capacity from birth to 1 yr of age. Pediatr Allergy Immunol 2009; 20: 714–725.

    Article  PubMed  Google Scholar 

  24. Tissieres P, Ochoda A, Dunn-Siegrist I, Drifte G, Morales M, Pfister R et al. Innate immune deficiency of extremely premature neonates can be reversed by interferon-gamma. PLoS ONE 2012; 7: e32863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gasparoni A, Ciardelli L, Avanzini A, Castellazzi AM, Carini R, Rondini G et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults. Biol Neonate 2003; 84: 297–303.

    Article  CAS  PubMed  Google Scholar 

  26. El Marsafy S, Dosquet C, Coudert MC, Bensussan A, Carosella E, Gluckman E . Study of cord blood natural killer cell suppressor activity. Eur J Haematol 2001; 66: 215–220.

    Article  CAS  PubMed  Google Scholar 

  27. Gardiner CM, Meara AO, Reen DJ . Differential cytotoxicity of cord blood and bone marrow-derived natural killer cells. Blood 1998; 91: 207–213.

    CAS  PubMed  Google Scholar 

  28. Hebra A, Strange P, Egbert JM, Ali M, Mullinax A, Buchanan E . Intracellular cytokine production by fetal and adult monocytes. J Pediatr Surg 2001; 36: 1321–1326.

    Article  CAS  PubMed  Google Scholar 

  29. Beloosesky R, Maravi N, Weiner Z, Khatib N, Awad N, Boles J et al. Maternal lipopolysaccharide-induced inflammation during pregnancy programs impaired offspring innate immune responses. Am J Obstetr Gynecol 2010; 203: 185.e1–185.e4.

    Article  Google Scholar 

  30. Lehmann I, Thoelke A, Weiss M, Schlink U, Schulz R, Diez U et al. T cell reactivity in neonates from an East and a West German city—results of the LISA study. Allergy 2002; 57: 129–136.

    Article  CAS  PubMed  Google Scholar 

  31. Lodoen MB, Lanier LL . Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 2006; 18: 391–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luevano M, Madrigal A, Saudemont A . Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 2012; 9: 310–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rukavina D, Laskarin G, Rubesa G, Strbo N, Bedenicki I, Manestar D et al. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood 1998; 92: 2410–2420.

    CAS  PubMed  Google Scholar 

  34. Rybka K, Orzechowska B, Siemieniec I, Leszek J, Zaczyńska E, Pająk J et al. Age related natural antiviral non-specific immunity of human leukocytes. Med Sci Monit 2003; 9: BR413–BR417.

    PubMed  Google Scholar 

  35. Julkunen I, Melén K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S . Inflammatory responses in influenza A virus infection. Vaccine 2000; 19: S32–S37.

    Article  CAS  PubMed  Google Scholar 

  36. Wu L, Zhang C, Zhang J . HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway. Cell Mol Immunol 2011; 8: 433–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Juretic E, Uzarevic B, Petrovecki M, Juretic A . Two-color flow cytometric analysis of preterm and term newborn lymphocytes. Immunobiology 2000; 202: 421–428.

    Article  CAS  PubMed  Google Scholar 

  38. Li JR, Li H, Mao HW, Yu MX, Yang F, Fan YY et al. Comparison of cytotoxic activity of natural killer cells induced by interleukin-15 in cord and peripheral blood. Exp Hematol 2010; 38: S81–S82.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 30973235 and 81170606), Science and Technology project of Sichuan Science and Technology Department (2010SZ0110), General Research Fund, Research Grants Council of Hong Kong (HKU 781211M) and the Area of Excellence Scheme of the University Grants Committee, Hong Kong SAR, China (AoE/M-12/06).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, H., Mao, H. et al. Impaired NK cell antiviral cytokine response against influenza virus in small-for-gestational-age neonates. Cell Mol Immunol 10, 437–443 (2013). https://doi.org/10.1038/cmi.2013.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.31

Keywords

This article is cited by

Search

Quick links