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Reciprocal crosstalk between dendritic cells and natural
killer cells under the effects of PGE2 in immunity and
immunopathology

Hedi Harizi

The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in

regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and

chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the

innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated

molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk

between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types,

PGE2has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of

the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies

have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune

response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as

powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis,

migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC–

NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes.
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INTRODUCTION

Dendritic cells (DCs) and natural killer (NK) cells have

critical roles in immune regulation,1 and both play key roles

in the innate immune response against cancer and infec-

tions.2,3 DCs are a heterogeneous group of cells that differ

in their origin, anatomic location, phenotype and function.

They have strong antigen-presenting capacity and potently

stimulate naive, memory and effector T cells.4 Several dif-

ferent phenotypic and functional subsets of DCs have been

described.5,6 Stimulatory DCs are involved in the initiation

of immune responses, while tolerogenic DCs are required

for the initiation and maintenance of immunological to-

lerance.7 Immature DCs and some subsets of resting plasma-

cytoid DCs can behave as tolerogenic cells, characterized

by their low expression of costimulatory molecules and

their ability to inhibit the effector T-cell responses.8

Immunosuppressive cytokines, including IL-10 and TGF-b1,
and phagocytosis of apoptotic cells are both involved in the

generation of tolerogenic DCs, which subsequently can induce

an anergic state in CD41 memory T cells.9,10

In addition to their professional antigen presenting func-

tion, DCs are able to converse with NK cells.11 Although

initially described as lymphocytes involved in innate immu-

nity, NK cells are now known to be involved in the regulation

of adaptive immune responses.12 NK cells play critical roles in

host defense against tumors and pathogens through their cyto-

toxic activity and the production of cytokines, particularly

IFN-c, which is the most important proinflammatory cytokine

involved in controlling many pathogenic organisms.13 Like

DCs, NK cells are subdivided into different functional subsets

in humans and mice. In humans, CD56brightCD161 cells and

CD56dimCD162 cells are two subpopulations of NK cells that

differ in their cytotoxic activity, cytokine production and

migratory capacity.14 Moreover, two mature subsets of NK

cells, CD27high NK cells and CD27low NK cells, with distinct

NK receptor expression profiles and functions have been
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identified in humans and mice.15 Similar to DCs, NK cells can

acquire tolerogenic activity through the release of TGF-b1,
which suppresses their own production of IFN-c and increases
their cytotoxicity against activated CD41 T cells.16

The bidirectional crosstalk betweenDCs andNK cells has led

to increasing interest in both the regulatory and potentiating

mechanisms of the innate immune responses and the sub-

sequent adaptive immune responses both in normal and

pathological settings.17,18 Recently, much interest has been

focused on functional DC–NK cell crosstalk and its role in

immune regulation.11,19 The reciprocal crosstalk between

DCs and NK cells can occur in the periphery or in secondary

lymphoid tissues. In both locations, DCs and NK cells interact

with each other through cell–cell contact and membrane-

bound ligands or by soluble agents synthesized by immune

and non-immune cells. DC-derived cytokines have critical role

in regulating NK cell phenotypes and function, and IL-12 pro-

duced by activated DCs induces NK cell release of IFN-c.20 NK
cell proliferation and expression of the activationmarker CD69

can be induced by human monocyte-derived DC.21–24

Moreover, mature DCs can activate NK cell cytotoxicity and

IFN-c production.2,21 Conversely, NK cells can regulate DC

function. NK cells may induce death rather than the activation

of DCs, particularly in immature stage, based on the DC subset

and the stage. Activated NK cells are able to kill autologous

immature DCs through the CD94/NKG2A inhibitory NK

receptor.25

NK cells can also enhance DC maturation and immunosti-

mulatory capacity.26 Several studies have reported that NK cells

efficiently promote human monocyte-derived DC differenti-

ation and maturation and markedly augment their capacity to

produce proinflammatory cytokines and stimulate T-cell res-

ponses.21,27,28 In contrast to CD21 NK cells, activated CD22

NK cell subset produce IFN-c, inducing DC maturation29 and

stimulating T-cell responses30 in an animal model of

Mycobacterium bovis infection. Direct contact with DCs and

NK cell-released cytokines, including TNF-alpha and IFN-c,
are both involved in these effects.22,31,32 Thus,DCs andNK cells

appear to guide each other’s functions both in the periphery

and secondary lymphoid organs through cell–cell contact and

the release of soluble factors, including cytokines. Other soluble

factors, especially prostaglandin E2 (PGE2), have emerged as a

potential regulator of DC–NK crosstalk during immunity and

immunopathology. PGE2, the most well-known and well-

studied PG, can profoundly modulate the various aspects of

the immune and inflammatory responses.33–35 PGE2 is pro-

duced by many immune and non-immune cells and acts

on all the components of the innate and adaptive immune

responses.36

PGE2 PRODUCTION BY DCS BUT NOT BY NK CELLS

A fundamental aspect of DC function is their ability to produce

various endogenous mediators, including cytokines and other

inflammatory mediators, including PGs37 and leukotrienes.38

Among the PGs, PGE2 is one of the main inflammatory lipid

mediators produced in large amounts by many cell types,

including macrophages, DCs, fibroblasts, endothelial cells

and some types of malignant cells.

PGE2 is a lipid mediator synthesized by COX from an ara-

chidonic acid precursor. The COX enzyme has two isoforms,

COX-1 and COX-2, with different physiological functions and

different susceptibilities to inhibition by non-steroidal anti-

inflammatory drugs (NSAIDs).39 COX-1 is constitutively

expressed in most cells and is involved in regulating normal

physiological functions, such as immune responses, blood

pressure, gastrointestinal integrity and fertility, whereas

COX-2 expression is undetectable in the resting state but can

bemarkedly upregulated following stimulation of immune and

stromal cells. The rate-limiting enzyme in PGE2 synthesis is

COX-2. In DCs, COX-2 can be induced by bacterial lipopoly-

saccharide,40 mimicking bacterial infection, or CD40 trigger-

ing,41 which may occur during physiological interactions

between APC and T cells during antigen presentation. Pro-

inflammatory cytokines, especially TNF-alpha, can also induce

COX-2-derived PGE2.42

Substantial research has focused on the ability of different

subsets of DCs and other immune cells to synthesize PGE2 in

response to inflammatory stimuli. We and other groups have

reported that mouse bone marrow-derived DCs express both

isoforms of COX enzymes (COX-1 and COX-2) and produce

large amounts of PGE2 but not PGD2.40,43,44 Similar data were

obtained with immature and mature human monocyte-

derived DCs.45,46 Immune cells that produce large amounts

of PGE2 are considered to be the most powerful modulators

of inflammatory processes and immune function.33 Although

COX expression and PGE2 production by activated and non-

activated human and murine DCs have been amply demon-

strated, no studies have examined the ability of NK cells to

synthesize arachidonic acid-derived PGs, particularly PGE2.

The expression of COX-2-derived PGE2 has been demon-

strated in FOXP31CD41CD251 adaptive regulatory T cells.47

Other immune cells, such as B lymphocytes, are unable to

produce PGE2. However, they are an important target of

PGE2 immunomodulatory effects.48,49

AUTOCRINE AND PARACRINE EFFECTS OF PGE2 ON

DCS AND NK CELLS

PGE2 is predominantly produced by APCs and has marked

autocrine and paracrine effects on their phenotype and func-

tion.50,51 The biological effects of PGE2 on immune and

inflammatory cells are exerted by four G protein-coupled

receptors on the plasma membrane, also known as E prosta-

noid (EP) receptors (EP1–4).52 The presence of PGE2 EP

receptors on many immune and stromal cell types reflects the

ubiquitous nature of PGE2 function.52,53

Effects of PGE2 onDCmaturation, activation andmigration

PGE2 has long been considered a major product and modu-

lator of activated macrophages,36 but has become a key

regulator of DC biology.34,54,55 Cytokine-producing capacity,

Th-cell polarizing ability, and chemokine expression, migra-

tion and APC functions of DC have been reported to be
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regulated by PGE2 in both autocrine and paracrine manners.

Depending on the nature of maturation signals and tissue

localization, PGE2 has different and sometimes opposite effects

on DC biology.35 In peripheral tissues, PGE2 seems to act as a

potent activator of DCs. PGE2 stimulates the surface expres-

sion of C–C chemokine receptor type 7, a chemokine that

promotes DC migration to secondary lymphoid organs.56

When DCs migrate to secondary lymphoid organs, PGE2 has

an inhibitory role and impedes the maturation of DCs, their

expression of MHC class II molecules and their ability to acti-

vate T cells.37,40 PGE2 exhibits both pro- and anti-inflammatory

effects on DCs.57 Depending on the maturation stage, PGE2

exhibits differential effects on immature and mature DCs.

With immature DCs, PGE2 appears to cooperate with the

pro-inflammatory cytokines IL-6, TNF-a and IL-1beta to pro-

mote the development of pro-inflammatory subsets of DCs.58,59

Rieser et al.60 reported that, when given in combination with

other pro-inflammatory factors, PGE2 can stimulate DC pro-

inflammatory phenotypes and promote IL-12 production.

Conversely, through stimulating the production of IL-10 by

mature DCs,37 PGE2 can act as an anti-inflammatory factor.

We have previously demonstrated that PGE2 can exert inhi-

bitory activity, reducing the maturation of DCs and their ability

to present antigen.40 Jing et al.61 reported that PGE2 acts as an

anti-inflammatory molecule by inhibiting DC CCL3 and CCL4

inflammatory chemokine release, preventing excess accumula-

tion of activated immune cells. These inhibitory effects of PGE2

on DC biology corroborate the well-known suppressive effects

of PGs on the immune response.33,36

The existence of four EP receptors and their various isoforms

coupled to their distinct intracellular signaling could explain

the complex and sometimes opposite effects of PGE2, espe-

cially on DC function. We are the first group to describe the

coexpression of all EP receptors in murine DCs and to show

that PGE2 suppresses DC functionsmainly through an EP2 and

EP4 receptor-dependent mechanism.50 Other investigators

have clearly demonstrated that the EP2 and EP4 receptors

mediated most of the effects of PGE2 on DC phenotype, mat-

uration, migration and function.44 Collectively, these data sug-

gested that (i) targeting PGE2 EP2/EP4 receptor signaling may

be a powerful mechanism for modulating DC activity and that

(ii) the seemingly contradictory actions of PGE2 should be

considered in developing rational protocols based on DCs

aimed at treating immunological disorders, ranging from auto-

immune disorders to cancers.

Effects of PGE2 on DC-derived cytokines and T-cell

polarization

Cytokines are produced by different cell types and act in a

coordinated manner on hematopoiesis, immune responses,

and inflammation. Another established function of PGE2 is

the regulation of cytokine production by immune cells, espe-

cially DCs.43 We previously reported that PGE2-primed DCs

produced high levels of IL-10, which is a prototypically anti-

inflammatory cytokine that down-regulates IL-12 production

and APC activity in DCs.37 As PGE2 is an environmentally

bioactivemolecule, its activity may be prolonged and sustained

by other endogenously produced factors, mainly IL-10. Similar

to PGE2, IL-10 is thought to play a major role in decreasing

antigen presentation and inhibiting Th1-mediated immune

responses. By triggering IL-10 synthesis, which inhibits various

aspects of cell-mediated immunity,62 PGE2 induces the

development of a tolerogenic subset of DCs.63,64 In addition,

cytokine secretion profiles and the differentiation of T helper

lymphocytes are modulated by PGE2. In fact, PGE2-primed

DCs induce the differentiation of naive T cells into Th2 cells,

which produce high levels of IL-4 and no IFN-c.65 These results
support the crucial role of PGE2 in biasing the immune res-

ponse toward a Th2 cytokine profile. This finding has been

confirmed in BALB/c mice, which are characterized by a

Th2-dominant immune response in vivo, which was shown

to be dependent on PGE2.66 The modulatory effects of PGE2

on DC-derived cytokines and T helper lymphocyte differenti-

ation have been shown to be primarily mediated by EP2 and/or

EP4 receptor-dependent mechanisms.67,68

Effects of PGE2 on NK cell activity

NK cells are a population of innate leukocytes that play an

important role in the host immune response against tumors,

virus-infected cells and bacterial infections20 and that are able

to recognize and kill tumor cells. Several lines of evidence have

support a marked effect of PGE2 on NK cell biology. This lipid

mediator can act directly on NK cells to inhibit their cytotoxic

activity and their ability to produce cytokines, particularly

IFN-c.69–71 PGE2 has been reported to inhibit NK cell IFN-c
production and cytotoxicity through downregulating the

activating receptors NKG2D and 2B4.18 In addition, Joshi

et al.72 reported that the suppressive effects of PGE2 on NK

cell function may be mediated by inhibiting IL-15-induced

IFN-c production.

Considerable research has reported that NK cells express all

PGE2 EP receptors and that PGE2 acts on NK cells through the

EP2 and/or EP4 receptor subtypes,73–75 which are known to be

powerful activators of the adenylate cyclase system.70 Since the

adenylate cyclase system is involved in inhibiting killing by NK

cells and inducing the CD94/NKG2A inhibitory NK receptor

following PGE2 signaling,76 it is not surprising that PGE2 has

an inhibitory effect on NK cell function. Thus, the EP2/EP4

receptors have emerged as pivotal regulators of NK cell activity,

and targeting these receptors may prevent NK inhibition by

PGE2.

Effects of PGE2 on DC–NK cell crosstalk

In the innate immune response, NK cell activity involves close

interactions with activated APCs, especially DCs,21 which are

major producers of PGE2.40 Given the synthesis of large

amounts of PGE2 by such activated professional APCs and

because NK cells expressed all known EP receptors,73 it is not

surprising that DCs can modulate NK cell activity through the

paracrine effects of the endogenously released PGE2 during

DC–NK cell crosstalk. In fact, DC-mediated NK-cell effector

functions are influenced by PGE2. Recently, PGE2 has been
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reported to inhibit DC-NK cell crosstalk by modulating DC

secretion of the chemokines and cytokines that are involved in

NK cell recruitment.34,77 Moreover, PGE2-matured DCs fail to

attract NK cells and show reduced capacity to stimulate NK cell

IFN-c production, and NK cell-dependent Th1 polarization

and cytolysis activity can be inhibited following the DC-

mediated effects of PGE2 on NK-cell responses. Conversely,

the suppressive effects of PGE2 on NK cell function also have

a crucial role in the DC-mediated immune response. Mailliard

et al.78 reported that PGE2 inhibition of NK cell IFN-c pro-

duction abolished NK cell ‘helper’ function in the DC-

mediated induction of Th1 andCTL responses. Taken together,

these data indicate that PGE2may be a potent inhibitor of DC–

NK cell crosstalk and thereby the innate and adaptive immune

responses.18 The efficient crosstalk betweenDCs andNK cells is

analogous to that between activated DC and T lymphocytes.

Thus, the inhibitory activity of PGE2 on DCs affects not only

NK cells but also T-cell biology.

DCS AND NK CELLS UNDER THE EFFECTS OF PGE2 IN

IMMUNOPATHOLOGIES

PGE2 has been described as a potent lipid mediator with

diverse actions and is known to regulate many functions in

all human biological systems.79 Many clinical and pharmaco-

logical studies have reported that several immunological dis-

orders, such as tumors, asthma and infectious diseases, are

associated with high expression of COX-2 and PGE2 produc-

tion.80,81 Otherwise, the association of chronic inflammatory

diseases with elevated levels of PGE2 may compromise the

immunoregulatory function of DCs and NK cells and their

subsequent functions in immune disorders.

Tumor pathology

In tumor pathology, complex interactions between stroma

cells, tumor infiltrating cells and the tumor cells themselves

result in elevated COX-2 expression and PGE2 production.82

The overexpression of COX-2 and its major metabolite PGE2

has been reported to be linked to all carcinogenesis stages ran-

ging from initiation to cancer progression.83 Endogenously

produced PGE2 suppresses multiple immune functions acting

on most types of immune cells.33,35 When overexpressed,

COX-2-synthesized PGE2 acts as a tumor promotor, regulates

tumor angiogenesis84 and potently alters the phenotype and

function of circulating and tumor infiltrating DCs, resulting

in cancer-associated immunodeficiency.85 Moreover, many

tumors are known to be associated with impaired differenti-

ation and antigen-presenting function of DCs with an imma-

ture phenotype.86,87

In addition to DCs, NK cell function may be modulated by

tumor COX-2-derived PGE2. Pietra et al.88 found that mela-

noma cells greatly hamper the anti-tumor activity of human

NK cells by downregulating the surface expression of activating

receptors, including NKp30, NKp44 and NKG2D. This tumor

immunosuppressive effect has been shown to be primarily

mediated by soluble factors, such as PGE2 and indoleamine

2,3-dioxygenase, which inhibit both T and NK cell functions.

Moreover, NK cell cytotoxic activity can be increased by COX

inhibitors, including indomethacin and celecoxib, by down-

regulatingMHCclass I expression in a syngeneicmurinemodel

of metastatic breast cancer.89 Taken together, these data cor-

roborate the well-known suppressive effects of PGE2 on DC-

and NK cell-mediated anti-tumor immunity.90,91

Allergic diseases

The activation of NK cells is essential for the development of T

cell-dependent adaptive immune response in allergic diseases.

Several lines of evidence indicate that the development of

asthma is related to the innate immune response, including

NK cells and adaptive immune responses.92 In the lung, NK

cells are considered to be a potent regulator of Th1–Th2 cyto-

kine production, and an increased number of more activated

NK cells have been observed in patients with asthma,93 suggest-

ing that NK cells play an important role in the pathogenesis of

asthma.94,95 The contribution of NK cells in a mouse model of

OVA-induced asthma has been clearly demonstrated.96 NK

cells may increase antigen-specific CD81 T-cell activity, and

depletion of NK cells before exposure to an antigen alters the

induction of T cell-dependent antigen-specific immune res-

ponses. NK cells have the capacity to lyse immature DCs,

thereby limiting the number of DCs exposed to inflammatory

stimuli and likely limiting the immune response.

In the respiratory system,many cell types can produce PGE2,

including alveolar macrophages, airway epithelial cells and

DCs. PGE2 produced by airway epithelial cells induces the

differentiation of DCs with an anti-inflammatory phenotype

characterized by reduced secretion of TNF-alpha and increased

secretion of IL-10.97 Airway epithelial cell-derived PGE2

reduces the pro-inflammatory activity of DCs and limits their

activity through an EP4 receptor-dependentmechanism. PGE2

has well-established protective and beneficial effects in

asthma.98,99 This protective effect may be the result of both

direct actions exerted by PGE2 on airway smooth-muscle pro-

liferation and other anti-inflammatory mechanisms. Among

these mechanisms is the inhibition of the release of pro-inflam-

matory leukotrienes38 that are known to be major mediators in

the pathogenesis of asthma and many allergic diseases.

Differential involvement of the PGE2 EP receptors and signal-

ing pathways has been observed in asthma. For example, PGE2-

induced bronchodilation results from the direct activation of

EP2 receptors on airway smoothmuscle, whereas the induction

of the airway constriction by PGE2 is mediated by the EP1/EP3

receptors and appears to be dependent on neural pathway

activation.100 These data suggest that selective agonists that

activate EP2 without any effects on EP1/EP3 receptors appear

to be clinically useful in the treatment of asthma.

Infectious diseases

NK cells are known to play a pivotal role in innate defense

against viral infections.101 In infectious diseases, in vivo studies

identified a crucial role of the functional interaction between

DCs and NK cells in controlling NK cell-dependent patho-

logical processes. Using a murine model of cytomegalovirus
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infection (the evolution of which is dependent on the NK cell

activity), Andrews et al.102 observed that the expansion

Ly49H1 NK cells is essential for the homeostasis of splenic

DCs. Conversely, in infected mice, CD8a1 DCs are required

for the expansion of Ly49H1 NK cells in the late phase of

infection.

EFFECTIVE APPROACHES FOR TARGETING THE

EFFECTS OF PGE2 ON DC–NK CELL CROSSTALK: COX-2

AND EP RECEPTOR SIGNALING

COX-2/PGE2/EP receptor signaling is crucial for immune-

mediated tumor suppression.103,104 NSAIDs have a strong

impact on several components of anti-tumor immunity

because of their inhibitory effects on tumor-derived COX-2/

PGE2 signaling. NSAIDs are the most popular medications for

treating pain, fever and inflammation and have potent immu-

nomodulatory effects on different immune cells, including

tumor-associated macrophages, DCs, NK cells, T effector cells

and T regulatory cells. NSAIDs act primarily through inhi-

biting COX activity, which in turn leads to decreased PGE2

production.105 Although the anti-inflammatory activities of

NSAIDs, which are the basis for their extensive clinical value,

are well known, their long-term use is associated with gastro-

intestinal complications such as ulceration.106 To decrease the

risk of gastrointestinal toxicity, COX-2-selective inhibitors

(Coxibs) have been developed as new anti-inflammatory

agents. COX-2 has been targeted in many clinical studies as a

potent candidate for anticancer drug development,107 and the

inhibition of PGE2 production by NSAIDs or Coxibs may, at

least in part, powerfully increase anti-tumor responses.108,109

In addition, various epidemiological and laboratory studies

have indicated that NSAID usage might reduce the risk of

cancer.110,111 Thus, targeting downstream prostanoid synthetic

enzymes might provide a new approach for inhibiting tumor

progression.

Although COX inhibitors (Coxibs and NSAIDs) appear to

enhance the anti-tumor immune response and the therapeutic

potential of cancer vaccines,112,113 concerns regarding their

potential toxicity during long-term usage might represent a

major limitation bringing to their use into clinical prac-

tice.114,115 Alternatively, the immunopharmacological use of

potent and selective-EP receptor antagonists with decreased

toxicity profiles in tumor settings may be an ideal approach

for reversing tumor-mediated immune system suppression by

preventing the direct effects of PGE2 on immune cells.116

Selective antagonists for every EP receptor subtype have now

been developed.117,118 Some of themhave been tested, and their

anti-neoplastic activity and toxicity in experimental models of

primary carcinogenesis have been evaluated. Encouraging

results are summarized in table 1. Collectively, these data

showed that antagonists of PGE2–EP receptor signaling, espe-

cially of EP2 and EP4, have promising anti-neoplastic activity

with no toxicity in experimental models. However, their per-

tinent use in clinical settings requires further research with the

aim of targeting PGE2–EP receptor signaling in immunocytes

for enhancing anti-tumor immunity.

CONCLUDING REMARKS

The bidirectional interactions between DCs and NK cells result

in reciprocal effects on both cell types and have a critical influ-

ence on the outcome of immune responses. Accumulating

evidence is revealing that DC–NK cell crosstalk is markedly

influenced by PGE2. However, it is important to know (i) the

expression pattern of PGE2 and PGE2–EP receptors during

DC–NK cell crosstalk; (ii) how PGE2 affects DC–NK cell cross-

talk; and (iii) what subsets of both innate cell types should be

targeted for the induction of efficient and specific immune

responses. The relevant EP receptors and intracellular signaling

pathways mediating the opposite and sometimes contradictory

effects of PGE2may differ depending upon the disease status of

the host (asthma, cancer) and can alsomay vary over the course

of the same immune disorder (asthma, for example). These

data suggest that the seemingly contradictory actions of

PGE2 should be considered in the development of rational

protocols aimed at treating immunological disorders ranging

from cancer to asthma. In addition, the relative contribution of

each EP receptor in mediating PGE2 signaling depends on the

cell subsets and their maturation-activation states. Since PGE2

has divergent effects (protective/suppressive) and innate

immune cells do not all respond in similar manner, different

and specific therapeutic approaches based on the interplay

between PGE2 and DC–NK cell crosstalk will be required for

each disease.

The general consensus is that the EP2 and EP4 receptors have

emerged as pivotal regulators in mediating the effects of PGE2

in normal and pathological immune responses. Although

COX-2 is responsible for the production of high levels of

PGE2 during inflammatory conditions, targeting the EP2

Table 1 Anti-neoplastic activity of major EP receptor antagonists in experimental models

EP receptors Antagonists Species Diseases and results Refs

EP1 ONO-8711 Rat Suppression of tongue carcinogenesis 119

ONO-8711 Rat Suppression of colon cancer development 120

EP2 PF-04418948 Human, mice, rat Reduction of cutaneous blood flow 117

EP3 ONO-AE3-240 Human Inhibition of growth in oral squamous cell carcinomas 121

EP4 AH23848 Mice Inhibition of breast cancer metastasis 122, 123

ONO-AE3-208 Mice Inhibition of breast cancer metastasis 123

EP2/EP4 Frondoside A Mice Inhibition of breast cancer metastasis 124

Abbreviation: EP, E-prostanoid.
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and/or EP4 receptors by using selective antagonists may offer

more specificity than the current clinical usage of COX inhibi-

tors and avoid inhibiting other COXmetabolites, such as pros-

tacyclin, which may be beneficial in the anti-tumor immune

response. A clearer of understanding of PGE2/EP2/EP4 recep-

tor signaling, using both agonists and antagonists, will be of

great importance and should be considered in developing

immunotherapeutic strategies to reinforce DC–NK cell cross-

talk and the subsequent immune response. Further studies are

required to answer the following outstanding questions regard-

ingDC–NK cell crosstalk under the immunosuppressive effects

of PGE2:

1. What are the primary mechanisms by which COX-2-

derived PGE2 modulates NK-DC crosstalk and the sub-

sequent immune response?

2. Is there any interplay between PGE2 and other immuno-

suppressive agents?

3. How canwe reinforceNK cell- andDC-mediated immun-

ity under the effects of PGE2?

4. What is the role of PGE2 in the connection between

chronic inflammatory diseases and neoplastic trans-

formation?
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