Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

B-cell-targeted therapies in systemic lupus erythematosus

Abstract

Autoreactive B cells are one of the key immune cells that have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). In addition to the production of harmful auto-antibodies (auto-Abs), B cells prime autoreactive T cells as antigen-presenting cells and secrete a wide range of pro-inflammatory cytokines that have both autocrine and paracrine effects. Agents that modulate B cells may therefore be of potential therapeutic value. Current strategies include targeting B-cell surface antigens, cytokines that promote B-cell growth and functions, and B- and T-cell interactions. In this article, we review the role of B cells in SLE in animal and human studies, and we examine previous reports that support B-cell modulation as a promising strategy for the treatment of this condition. In addition, we present an update on the clinical trials that have evaluated the therapeutic efficacy and safety of agents that antagonize CD20, CD22 and B-lymphocyte stimulator (BLyS) in human SLE. While the results of many of these studies remain inconclusive, belimumab, a human monoclonal antibody against BLyS, has shown promise and has recently been approved by the US Food and Drug Administration as an indicated therapy for patients with mild to moderate SLE. Undoubtedly, advances in B-cell immunology will continue to lead us to a better understanding of SLE pathogenesis and the development of novel specific therapies that target B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lahita RG . The Clinical Presentation Systemic lupus erythematosus. In: Tsokos G, Buyon JP, Koike T, Lahita RG (eds) Systemic Lupus Erythematosus. 5th ed. San Diego, Elsevier Academic Press, 2011: 525–539 .

    Google Scholar 

  2. Mok CC, Lau CS . Pathogenesis of systemic lupus erythematosus. J Clin Pathol 2003; 56: 481–490.

    CAS  Google Scholar 

  3. Rahman A, Isenberg DA . Systemic lupus erythematosus. N Engl J Med 2008; 358: 929–939.

    CAS  Google Scholar 

  4. Shlomchik MJ, Craft JE, Mamula MJ . From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 2001; 1: 147–153.

    CAS  Google Scholar 

  5. Sanz I, Lee FE . B cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6: 326–337.

    CAS  Google Scholar 

  6. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349: 1526–1533.

    CAS  Google Scholar 

  7. Reichlin M . Ribosomal P antibodies and CNS lupus. Lupus 2003; 12: 916–918.

    CAS  Google Scholar 

  8. Alba P, Bento L, Cuadrado MJ, Karim Y, Tungekar MF, Abbs I et al. Anti-dsDNA, anti-Sm antibodies, and the lupus anticoagulant: significant factors associated with lupus nephritis. Ann Rheum Dis 2003; 62: 556–560.

    CAS  Google Scholar 

  9. Forger F, Matthias T, Oppermann M, Becker H, Helmke K . Clinical significance of anti-dsDNA antibody isotypes: IgG/IgM ratio of anti-dsDNA antibodies as a prognostic marker for lupus nephritis. Lupus 2004; 13: 36–44.

    CAS  Google Scholar 

  10. Cortes-Hernandez J, Ordi-Ros J, Labrador M, Bujan S, Balada E, Segarra A et al. Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am J Med 2004; 116: 165–173.

    CAS  Google Scholar 

  11. Jacob L, Lety MA, Louvard D, Bach JF . Binding of a monoclonal anti-DNA autoantibody to identical protein(s) present at the surface of several human cell types involved in lupus pathogenesis. J Clin Invest 1985; 75: 315–317.

    CAS  Google Scholar 

  12. Zhao Z, Weinstein E, Tuzova M, Davidson A, Mundel P, Marambio P et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum 2005; 52: 522–530.

    CAS  Google Scholar 

  13. Faaber P, Rijke TP, van de Putte LB, Capel PJ, Berden JH . Cross-reactivity of human and murine anti-DNA antibodies with heparan sulfate. The major glycosaminoglycan in glomerular basement membranes. J Clin Invest 1986; 77: 1824–1830.

    CAS  Google Scholar 

  14. Ehrenstein MR, Katz DR, Griffiths MH, Papadaki L, Winkler TH, Kalden JR et al. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int 1995; 48: 705–711.

    CAS  Google Scholar 

  15. Vlahakos D, Foster MH, Ucci AA, Barrett KJ, Datta SK, Madaio MP . Murine monoclonal anti-DNA antibodies penetrate cells, bind to nuclei, and induce glomerular proliferation and proteinuria in vivo. J Am Soc Nephrol 1992; 2: 1345–1354.

    CAS  Google Scholar 

  16. O'Neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A . Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J Immunol 2005; 174: 3781–3788.

    CAS  Google Scholar 

  17. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D . The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994; 180: 1295–1306.

    CAS  Google Scholar 

  18. Chan O, Shlomchik MJ . A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 1998; 160: 51–59.

    CAS  Google Scholar 

  19. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ . A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999; 189: 1639–1648.

    CAS  Google Scholar 

  20. Steinmetz OM, Velden J, Kneissler U, Marx M, Klein A, Helmchen U et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int 2008; 74: 448–457.

    CAS  Google Scholar 

  21. Mamula MJ, Fatenejad S, Craft J . B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 1994; 152: 1453–1461.

    CAS  Google Scholar 

  22. Pistoia V . Production of cytokines by human B cells in health and disease. Immunol Today 1997; 18: 343–350.

    CAS  Google Scholar 

  23. Duddy ME, Alter A, Bar-Or A . Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 2004; 172: 3422–3427.

    CAS  Google Scholar 

  24. Ronnblom L, Elkon KB . Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6: 339–347.

    Google Scholar 

  25. Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest 2010; 120: 214–222.

    CAS  Google Scholar 

  26. Oflazoglu E, Audoly LP . Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MAbs 2010; 2: 14–19.

    Google Scholar 

  27. Looney RJ, Anolik J, Sanz I . Treatment of SLE with anti-CD20 monoclonal antibody. Curr Dir Autoimmun 2005; 8: 193–205.

    CAS  Google Scholar 

  28. Deng Y, Tsao BP . Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 2010; 6: 683–692.

    CAS  Google Scholar 

  29. Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J et al. The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 2003; 48: 455–459.

    CAS  Google Scholar 

  30. Albert D, Dunham J, Khan S, Stansberry J, Kolasinski S, Tsai D et al. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. Ann Rheum Dis 2008; 67: 1724–1731.

    CAS  Google Scholar 

  31. Robak E, Robak T . Monoclonal antibodies in the treatment of systemic lupus erythematosus. Curr Drug Targets 2009; 10: 26–37.

    CAS  Google Scholar 

  32. Dorner T, Goldenberg DM . Targeting CD22 as a strategy for treating systemic autoimmune diseases. Ther Clin Risk Manag 2007; 3: 953–959.

    Google Scholar 

  33. Tedder TF, Poe JC, Haas KM . CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 2005; 88: 1–50.

    CAS  Google Scholar 

  34. Fujimoto M, Poe JC, Hasegawa M, Tedder TF . CD19 regulates intrinsic B lymphocyte signal transduction and activation through a novel mechanism of processive amplification. Immunol Res 2000; 22: 281–298.

    CAS  Google Scholar 

  35. Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dorner T . Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis 2008; 67: 450–457.

    CAS  Google Scholar 

  36. Daridon C, Blassfeld D, Reiter K, Mei HE, Giesecke C, Goldenberg DM et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12: R204.

    Google Scholar 

  37. Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res 2010; 16: 1894–1903.

    CAS  Google Scholar 

  38. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM . SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 2011; 17: 6448–6458.

    CAS  Google Scholar 

  39. Mauri C, Bosma A . Immune regulatory function of B cells. Annu Rev Immunol 2012; 30: 221–241.

    CAS  Google Scholar 

  40. Watanabe R, Ishiura N, Nakashima H, Kuwano Y, Okochi H, Tamaki K et al. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J Immunol 2010; 184: 4801–4809.

    CAS  Google Scholar 

  41. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010; 32: 129–140.

    CAS  Google Scholar 

  42. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285: 260–263.

    CAS  Google Scholar 

  43. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189: 1747–1756.

    CAS  Google Scholar 

  44. Mackay F, Schneider P, Rennert P, Browning J . BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–264.

    CAS  Google Scholar 

  45. Crowley JE, Treml LS, Stadanlick JE, Carpenter E, Cancro MP . Homeostatic niche specification among naive and activated B cells: a growing role for the BLyS family of receptors and ligands. Semin Immunol 2005; 17: 193–199.

    CAS  Google Scholar 

  46. Cheema GS, Roschke V, Hilbert DM, Stohl W . Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001; 44: 1313–1319.

    CAS  Google Scholar 

  47. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren's syndrome. Ann Rheum Dis 2003; 62: 168–171.

    CAS  Google Scholar 

  48. Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001; 166: 6–10.

    CAS  Google Scholar 

  49. Collins CE, Gavin AL, Migone TS, Hilbert DM, Nemazee D, Stohl W . B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther 2006; 8: R6.

    Google Scholar 

  50. Petri M, Stohl W, Chatham W, McCune WJ, Chevrier M, Ryel J et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum 2008; 58: 2453–2459.

    CAS  Google Scholar 

  51. Chu VT, Enghard P, Schurer S, Steinhauser G, Rudolph B, Riemekasten G et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 2083–2093.

    CAS  Google Scholar 

  52. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999; 190: 1697–1710.

    CAS  Google Scholar 

  53. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404: 995–999.

    CAS  Google Scholar 

  54. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007; 204: 1959–1971.

    CAS  Google Scholar 

  55. Jacob CO, Pricop L, Putterman C, Koss MN, Liu Y, Kollaros M et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J Immunol 2006; 177: 2671–2680.

    CAS  Google Scholar 

  56. Jacob CO, Guo S, Jacob N, Pawar RD, Putterman C, Quinn WJ 3rd et al. Dispensability of APRIL to the development of systemic lupus erythematosus in NZM 2328 mice. Arthritis Rheum 2012; 64: 1610–1619.

    CAS  Google Scholar 

  57. Ramanujam M, Wang X, Huang W, Liu Z, Schiffer L, Tao H et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 2006; 116: 724–734.

    CAS  Google Scholar 

  58. Naka T, Nishimoto N, Kishimoto T . The paradigm of IL-6: from basic science to medicine. Arthritis Res 2002; 4 Suppl 3: S233–242.

    Google Scholar 

  59. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986; 324: 73–76.

    CAS  Google Scholar 

  60. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR . Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 1991; 147: 117–123.

    CAS  Google Scholar 

  61. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I . Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 2000; 18: 565–570.

    CAS  Google Scholar 

  62. Esposito P, Balletta MM, Procino A, Postiglione L, Memoli B . Interleukin-6 release from peripheral mononuclear cells is associated to disease activity and treatment response in patients with lupus nephritis. Lupus 2009; 18: 1329–1330.

    Google Scholar 

  63. Hagiwara E, Gourley MF, Lee S, Klinman DK . Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10:interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum 1996; 39: 379–385.

    CAS  Google Scholar 

  64. Takeno M, Nagafuchi H, Kaneko S, Wakisaka S, Oneda K, Takeba Y et al. Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J Immunol 1997; 158: 3529–3538.

    CAS  Google Scholar 

  65. Kitani A, Hara M, Hirose T, Harigai M, Suzuki K, Kawakami M et al. Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol 1992; 88: 75–83.

    CAS  Google Scholar 

  66. Nagafuchi H, Suzuki N, Mizushima Y, Sakane T . Constitutive expression of IL-6 receptors and their role in the excessive B cell function in patients with systemic lupus erythematosus. J Immunol 1993; 151: 6525–6534.

    CAS  Google Scholar 

  67. Mihara M, Fukui H, Koishihara Y, Saito M, Ohsugi Y . Immunologic abnormality in NZB/W F1 mice. Thymus-independent expansion of B cells responding to interleukin-6. Clin Exp Immunol 1990; 82: 533–537.

    CAS  Google Scholar 

  68. Alarcon-Riquelme ME, Moller G, Fernandez C . Age-dependent responsiveness to interleukin-6 in B lymphocytes from a systemic lupus erythematosus-prone (NZB×NZW)F1 hybrid. Clin Immunol Immunopathol 1992; 62: 264–269.

    CAS  Google Scholar 

  69. Finck BK, Chan B, Wofsy D . Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J Clin Invest 1994; 94: 585–591.

    CAS  Google Scholar 

  70. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY . Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 2006; 119: 296–305.

    CAS  Google Scholar 

  71. Kimura A, Kishimoto T . IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010; 40: 1830–1835.

    CAS  Google Scholar 

  72. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517.

    CAS  Google Scholar 

  73. Wan S, Xia C, Morel L . IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol 2007; 178: 271–279.

    CAS  Google Scholar 

  74. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ . Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229: 152–172.

    CAS  Google Scholar 

  75. Foy TM, Durie FH, Noelle RJ . The expansive role of CD40 and its ligand, gp39, in immunity. Semin Immunol 1994; 6: 259–266.

    CAS  Google Scholar 

  76. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK . Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996; 97: 2063–2073.

    CAS  Google Scholar 

  77. Koshy M, Berger D, Crow MK . Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest 1996; 98: 826–837.

    CAS  Google Scholar 

  78. Vakkalanka RK, Woo C, Kirou KA, Koshy M, Berger D, Crow MK . Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera. Arthritis Rheum 1999; 42: 871–881.

    CAS  Google Scholar 

  79. Kato K, Santana-Sahagun E, Rassenti LZ, Weisman MH, Tamura N, Kobayashi S et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest 1999; 104: s947–955.

    Google Scholar 

  80. Mohan C, Shi Y, Laman JD, Datta SK . Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 1995; 154: 1470–1480.

    CAS  Google Scholar 

  81. Blossom S, Chu EB, Weigle WO, Gilbert KM . CD40 ligand expressed on B cells in the BXSB mouse model of systemic lupus erythematosus. J Immunol 1997; 159: 4580–4586.

    CAS  Google Scholar 

  82. Higuchi T, Aiba Y, Nomura T, Matsuda J, Mochida K, Suzuki M et al. Cutting Edge: Ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J Immunol 2002; 168: 9–12.

    CAS  Google Scholar 

  83. Early GS, Zhao W, Burns CM . Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black×New Zealand white mice. Response correlates with the absence of an anti-antibody response. J Immunol 1996; 157: 3159–3164.

    CAS  Google Scholar 

  84. Kalled SL, Cutler AH, Datta SK, Thomas DW . Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J Immunol 1998; 160: 2158–2165.

    CAS  Google Scholar 

  85. Chambers CA, Kuhns MS, Egen JG, Allison JP . CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–594.

    CAS  Google Scholar 

  86. Salomon B, Bluestone JA . Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–252.

    CAS  Google Scholar 

  87. Davidson A, Diamond B, Wofsy D, Daikh D . Block and tackle: CTLA4Ig takes on lupus. Lupus 2005; 14: 197–203.

    CAS  Google Scholar 

  88. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010; 62: 222–233.

    CAS  Google Scholar 

  89. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 2012; 64: 1215–1226.

    CAS  Google Scholar 

  90. Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, Portales-Perez D, Baranda L, Abud-Mendoza C et al. Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther 2006; 8: R83.

    Google Scholar 

  91. Melander C, Sallee M, Trolliet P, Candon S, Belenfant X, Daugas E et al. Rituximab in severe lupus nephritis: early B-cell depletion affects long-term renal outcome. Clin J Am Soc Nephrol 2009; 4: 579–587.

    CAS  Google Scholar 

  92. Terrier B, Amoura Z, Ravaud P, Hachulla E, Jouenne R, Combe B et al. Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French AutoImmunity and Rituximab registry. Arthritis Rheum 2010; 62: 2458–2466.

    CAS  Google Scholar 

  93. Garcia-Carrasco M, Mendoza-Pinto C, Sandoval-Cruz M, Soto-Vega E, Beltran-Castillo A, Jimenez-Hernandez M et al. Anti-CD20 therapy in patients with refractory systemic lupus erythematosus: a longitudinal analysis of 52 Hispanic patients. Lupus 2010; 19: 213–219.

    CAS  Google Scholar 

  94. Ramos-Casals M, Soto MJ, Cuadrado MJ, Khamashta MA . Rituximab in systemic lupus erythematosus: A systematic review of off-label use in 188 cases. Lupus 2009; 18: 767–776.

    CAS  Google Scholar 

  95. Narshi CB, Haider S, Ford CM, Isenberg DA, Giles IP . Rituximab as early therapy for pulmonary haemorrhage in systemic lupus erythematosus. Rheumatology (Oxford) 2010; 49: 392–394.

    CAS  Google Scholar 

  96. Pinto LF, Candia L, Garcia P, Marin JI, Pachon I, Espinoza LR et al. Effective treatment of refractory pulmonary hemorrhage with monoclonal anti-CD20 antibody (rituximab). Respiration 2009; 78: 106–109.

    CAS  Google Scholar 

  97. Abud-Mendoza C, Moreno-Valdes R, Cuevas-Orta E, Borjas A, Aranda F, Irazoque F et al. Treating severe systemic lupus erythematosus with rituximab. An open study. Reumatol Clin 2009; 5: 147–152.

    Google Scholar 

  98. Mysler E, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA et al. Efficacy and safety of ocrelizumab, a humanized antiCD20 antibody, in patients with active proliferative lupus nephritis (LN): results from the randomized, double-blind phase III BELONG study. Arthritis Rheum 2010; 62( Suppl 10): 1455.

    Google Scholar 

  99. Petri M, Hobbs K, Gordon C, Strand V, Wallace DJ, Kelley L et al. Randomized controlled trials of epratuzumab (anti-CD22 mAb targeting B-cells) reveal clinically meaningful improvements in patients with moderate/severe SLE flares. Annals of the Rheumatic diseases. Ann Rheum Dis 2008; 67( Suppl II): 53.

    Google Scholar 

  100. Wallace DJ, Hobbs K, Houssiau F, Strand V, Tak P, Wegener W et al. Randomized controlled trials of epratuzumab (anti-CD22 mAb targeting B-cells) reveal clinically meaningful reductions in corticosteroid use with favorable safety profile in moderate and severe flaring SLE patients. Ann Rheum Dis 2008; 67( Suppl II): 212.

    Google Scholar 

  101. Traczewski P, Rudnicka L . Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol 2011; 71: 175–182.

    CAS  Google Scholar 

  102. Strand V, Kalunian K, Coteur G, Barry A, Keininger D, Wegener W et al. Randomized controlled trials of epratuzumab (anti-CD22 mAb targeting B-cells) show meaningful improvements in health related quality of life in SLE patients with high disease activity and low baseline self-report measures. Ann Rheum Dis 2008; 67( Suppl II): 212.

    Google Scholar 

  103. http://clinicaltrials.gov/ct2/show/NCT00383513?term=NCT00383513&rank=1

  104. Wallace DJ, Stohl W, Furie RA, Lisse JR, McKay JD, Merrill JT et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum 2009; 61: 1168–1178.

    CAS  Google Scholar 

  105. Petri M, Furie R, Merrill J, Wallace D, Stohl W, Chatham W, et al. Six-year experience with belimumab in patients with SLE [Abstract]. In: European League Against Rheumatism Meeting. London, UK, 2011.

  106. Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 721–731.

    CAS  Google Scholar 

  107. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 2011; 63: 3918–3930.

    CAS  Google Scholar 

  108. Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 2012; 71: 1833–1838.

    CAS  Google Scholar 

  109. van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 2012; 71: 1343–1349.

    CAS  Google Scholar 

  110. Chan VS, Nie YJ, Shen N, Yan S, Mok MY, Lau CS . Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev 2012; 11: 890–897.

    CAS  Google Scholar 

  111. Merrill JT, Wallace DJ, Petri M, Kirou KA, Yao Y, White WI et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis 2011; 70: 1905–1913.

    CAS  Google Scholar 

  112. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008; 58: 1762–1773.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chak-Sing Lau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, VF., Tsang, HL., Tam, RY. et al. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol 10, 133–142 (2013). https://doi.org/10.1038/cmi.2012.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.64

Keywords

This article is cited by

Search

Quick links