Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

TLR signaling in B-cell development and activation

Abstract

Expression of Toll-like receptors (TLRs) in B cells provides a cell-intrinsic mechanism for innate signals regulating adaptive immune responses. In combination with other signaling pathways in B cells, including through the B-cell receptor (BCR), TLR signaling plays multiple roles in B-cell differentiation and activation. The outcome of TLR signaling in B cells is largely context-dependent, which partly explains discrepancies among in vitro and in vivo studies, or studies using different immunogens. We focus on recent findings on how B-cell-intrinsic TLR signaling regulates antibody responses, including germinal center formation and autoantibody production in autoimmune disease models. In addition, TLR signaling also acts on the precursors of B cells, which could influence the immune response of animals by shaping the composition of the immune system. With TLR signaling modulating immune responses at these different levels, much more needs to be understood before we can depict the complete functions of innate signaling in host defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Iwasaki A, Medzhitov R . Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291–295.

    Article  CAS  Google Scholar 

  2. Akira S . Toll-like receptors and innate immunity. Adv Immunol 2001; 78: 1–56.

    Article  CAS  Google Scholar 

  3. Barton GM, Kagan JC . A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9: 535–542.

    Article  CAS  Google Scholar 

  4. Bekeredjian-Ding I, Jego G . Toll-like receptors—sentries in the B-cell response. Immunology 2009; 128: 311–323.

    Article  CAS  Google Scholar 

  5. Halperin SA, Dobson S, McNeil S, Langley JM, Smith B, McCall-Sani R et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine 2006; 24: 20–26.

    Article  CAS  Google Scholar 

  6. Jennings GT, Bachmann MF . The coming of age of virus-like particle vaccines. Biol Chem 2008; 389: 521–536.

    Article  CAS  Google Scholar 

  7. Hardy RR, Kincade PW, Dorshkind K . The protean nature of cells in the B lymphocyte lineage. Immunity 2007; 26: 703–714.

    Article  CAS  Google Scholar 

  8. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    Article  CAS  Google Scholar 

  9. Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ et al. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 2008; 112: 3753–3761.

    Article  CAS  Google Scholar 

  10. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 2011; 186: 5367–5375.

    Article  CAS  Google Scholar 

  11. Meffre E . The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci 2011; 1246: 1–10.

    Article  CAS  Google Scholar 

  12. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A . Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 2012; 12: 282–294.

    Article  CAS  Google Scholar 

  13. Gross AJ, Lyandres JR, Panigrahi AK, Prak ET, DeFranco AL . Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. J Immunol 2009; 182: 5382–5392.

    Article  CAS  Google Scholar 

  14. Seo S, Buckler J, Erikson J . Novel roles for Lyn in B cell migration and lipopolysaccharide responsiveness revealed using anti-double-stranded DNA Ig transgenic mice. J Immunol 2001; 166: 3710–3716.

    Article  CAS  Google Scholar 

  15. Ueda Y, Liao D, Yang K, Patel A, Kelsoe G . T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J Immunol 2007; 178: 3593–3601.

    Article  CAS  Google Scholar 

  16. Hasan M, Lopez-Herrera G, Blomberg KE, Lindvall JM, Berglof A, Smith CI et al. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton's tyrosine kinase-deficient mice. Immunology 2008; 123: 239–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol 2008; 180: 800–808.

    Article  CAS  Google Scholar 

  18. Aranburu A, Ceccarelli S, Giorda E, Lasorella R, Ballatore G, Carsetti R . TLR ligation triggers somatic hypermutation in transitional B cells inducing the generation of IgM memory B cells. J Immunol 2010; 185: 7293–7301.

    Article  CAS  Google Scholar 

  19. Weller S, Bonnet M, Delagreverie H, Israel L, Chrabieh M, Marodi L et al. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88- and TIRAP- but not UNC-93B-deficient patients. Blood; e-pub ahead of print 21 September 2012; doi: 10.1182/blood-2012-07-440776.

    Article  CAS  Google Scholar 

  20. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 2006; 314: 1936–1938.

    Article  CAS  Google Scholar 

  21. Alugupalli KR, Akira S, Lien E, Leong JM . MyD88- and Bruton's tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. J Immunol 2007; 178: 3740–3749.

    Article  CAS  Google Scholar 

  22. Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 2011; 34: 375–384.

    Article  CAS  Google Scholar 

  23. Meyer-Bahlburg A, Khim S, Rawlings DJ . B cell intrinsic TLR signals amplify but are not required for humoral immunity. J Exp Med 2007; 204: 3095–3101.

    Article  CAS  Google Scholar 

  24. Pasare C, Medzhitov R . Control of B-cell responses by Toll-like receptors. Nature 2005; 438: 364–368.

    Article  CAS  Google Scholar 

  25. Jegerlehner A, Maurer P, Bessa J, Hinton HJ, Kopf M, Bachmann MF . TLR9 signaling in B cells determines class switch recombination to IgG2a. J Immunol 2007; 178: 2415–2420.

    Article  CAS  Google Scholar 

  26. Lanzavecchia A, Sallusto F . Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol 2007; 19: 268–274.

    Article  CAS  Google Scholar 

  27. Hou B, Reizis B, DeFranco AL . Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 2008; 29: 272–282.

    Article  CAS  Google Scholar 

  28. Browne EP . Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog 2011; 7: e1002293.

    Article  CAS  Google Scholar 

  29. Victora GD, Nussenzweig MC . Germinal Centers. Annu Rev Immunol 2012; 30: 429–457.

    Article  CAS  Google Scholar 

  30. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A . Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416: 603–607.

    Article  CAS  Google Scholar 

  31. Green NM, Marshak-Rothstein A . Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 2011; 23: 106–112.

    Article  CAS  Google Scholar 

  32. Marshak-Rothstein A . Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006; 6: 823–835.

    Article  CAS  Google Scholar 

  33. William J, Euler C, Christensen S, Shlomchik MJ . Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 2002; 297: 2066–2070.

    Article  CAS  Google Scholar 

  34. Herlands RA, Christensen SR, Sweet RA, Hershberg U, Shlomchik MJ . T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 2008; 29: 249–260.

    Article  CAS  Google Scholar 

  35. Ehlers M, Fukuyama H, McGaha TL, Aderem A, Ravetch JV . TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med 2006; 203: 553–561.

    Article  CAS  Google Scholar 

  36. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007; 204: 1959–1971.

    Article  CAS  Google Scholar 

  37. Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu C et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med 2011; 208: 2033–2042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Natural Science Foundation of China to BH (31170848) and to ZH (31200669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baidong Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Z., Hou, B. TLR signaling in B-cell development and activation. Cell Mol Immunol 10, 103–106 (2013). https://doi.org/10.1038/cmi.2012.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.61

Keywords

This article is cited by

Search

Quick links