Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Induction of M2-like macrophages in recipient NOD-scid mice by allogeneic donor CD4+CD25+ regulatory T cells

Abstract

CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining host immune tolerance via regulation of the phenotype and function of the innate and adaptive immune cells. Whether allogeneic CD4+CD25+ Tregs can regulate recipient mouse macrophages is unknown. The effect of allogeneic donor CD4+CD25+ Tregs on recipient mouse resident F4/80+macrophages was investigated using a mouse model in which allogeneic donor CD4+CD25+ Tregs were adoptively transferred into the peritoneal cavity of host NOD-scid mice. The phenotype and function of the recipient macrophages were then assayed. The peritoneal F4/80+ macrophages in the recipient mice that received the allogeneic CD4+CD25+ Tregs expressed significantly higher levels of CD23 and programmed cell death-ligand 1(PD-L1) and lower levels of CD80, CD86, CD40 and MHC II molecules compared to the mice that received either allogeneic CD4+CD25 T cells (Teffs) or no cells. The resident F4/80+ macrophages of the recipient mice injected with the allogeneic donor CD4+CD25+ Tregs displayed significantly increased phagocytosis of chicken red blood cells (cRBCs) and arginase activity together with increased IL-10 production, whereas these macrophages also showed decreased immunogenicity and nitric oxide (NO) production. Blocking arginase partially but significantly reversed the effects of CD4+CD25+ Tregs with regard to the induction of the M2 macrophages in vivo. Therefore, the allogeneic donor CD4+CD25+ Tregs can induce the M2 macrophages in recipient mice at least in part via an arginase pathway. We have provided in vivo evidence to support the unknown pathways by which allogeneic donor CD4+CD25+ Tregs regulate innate immunity in recipient mice by promoting the differentiation of M2 macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  PubMed  Google Scholar 

  2. Rafei M, Hsieh J, Zehntner S, Li M, Forner K, Birman E et al. A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 2009; 15: 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon S . Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  PubMed  Google Scholar 

  4. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 2011; 34: 385–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuroda E, Ho V, Ruschmann J, Antignano F, Hamilton M, Rauh MJ et al. SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J Immunol 2009; 183: 3652–3660.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon S, Martinez FO . Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32: 593–604.

    Article  CAS  PubMed  Google Scholar 

  7. Varin A, Gordon S . Alternative activation of macrophages: immune function and cellular biology. Immunobiology 2009; 214: 630–641.

    Article  CAS  PubMed  Google Scholar 

  8. Schreiber T, Ehlers S, Heitmann L, Rausch A, Mages J, Murray PJ et al. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J Immunol 2009; 183: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  9. Pollard JW . Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9: 259–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hashimoto M, Hirota K, Yoshitomi H, Maeda S, Teradaira S, Akizuki S et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J Exp Med 2010; 207: 1135–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mosser DM . The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.

    Article  CAS  PubMed  Google Scholar 

  13. Taams LS, van Amelsfort JM, Tiemessen MM, Jacobs KM, de Jong EC, Akbar AN et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 2005; 66: 222–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS . CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 2007; 104: 19446–19451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol Cell Biol 2011; 89: 130–142.

    Article  CAS  PubMed  Google Scholar 

  16. Johrens K, Franke A, Dietel M, Anagnostopoulos I . Non-neoplastic TdT-positive cells in bone marrow trephines with acute myeloid leukaemia before and after treatment express myeloid molecules. Pathobiology 2011; 78: 35–40.

    Article  PubMed  Google Scholar 

  17. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 2010; 463: 501–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tawara I, Shlomchik WD, Jones A, Zou W, Nieves E, Liu C et al. A crucial role for host APCs in the induction of donor CD4+CD25+ regulatory T cell-mediated suppression of experimental graft-versus-host disease. J Immunol 2010; 185: 3866–3872.

    Article  CAS  PubMed  Google Scholar 

  19. Peggs KS, Mackinnon S . Exploiting graft-versus-tumour responses using donor leukocyte infusions. Best Pract Res Clin Haematol 2001; 14: 723–739.

    Article  CAS  PubMed  Google Scholar 

  20. Korngold R . Pathophysiology of graft-versus-host disease directed to minor histocompatibility antigens. Bone Marrow Transplant 1991; 7( Suppl 1): 38–41.

    PubMed  Google Scholar 

  21. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117: 3921–3928.

    Article  CAS  PubMed  Google Scholar 

  22. Rezvani AR, Storb RF . Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun 2008; 30: 172–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 2009; 10: 769–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun Z, Zhao L, Wang H, Sun L, Yi H, Zhao Y . Presence of functional mouse regulatory CD4+CD25+ T cells in xenogeneic neonatal porcine thymus-grafted athymic mice. Am J Transplant 2006; 6: 2841–2850.

    Article  CAS  PubMed  Google Scholar 

  25. Joerink M, Ribeiro CM, Stet RJ, Hermsen T, Savelkoul HF, Wiegertjes GF . Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. J Immunol 2006; 177: 61–69.

    Article  CAS  PubMed  Google Scholar 

  26. Liu G, Ma H, Jiang L, Peng J, Zhao Y . The immunity of splenic and peritoneal F4/80+ resident macrophages in mouse mixed allogeneic chimeras. J Mol Med (Berl) 2007; 85: 1125–1135.

    Article  CAS  Google Scholar 

  27. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y . A potential side effect of cyclosporin A: inhibition of CD4+CD25+ regulatory T cells in mice. Transplantation 2006; 82: 1484–1492.

    Article  CAS  PubMed  Google Scholar 

  28. Liu G, Xia XP, Gong SL, Zhao Y . The macrophage heterogeneity: difference between mouse peritoneal exudate and splenic F4/80+ macrophages. J Cell Physiol 2006; 209: 341–352.

    Article  CAS  PubMed  Google Scholar 

  29. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S . Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179: 977–983.

    Article  CAS  PubMed  Google Scholar 

  30. Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 2006; 12: 955–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weng M, Huntley D, Huang IF, Foye-Jackson O, Wang L, Sarkissian A et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis. J Immunol 2007; 179: 4721–4731.

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi A, Ohnishi H, Okazawa H, Nakazawa S, Ikeda H, Motegi S et al. Positive regulation of phagocytosis by SIRPbeta and its signaling mechanism in macrophages. J Biol Chem 2004; 279: 29450–29460.

    Article  CAS  PubMed  Google Scholar 

  33. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V et al. SHIP represses the generation of alternatively activated macrophages. Immunity 2005; 23: 361–374.

    Article  CAS  PubMed  Google Scholar 

  34. Liu GW, Ma HX, Wu Y, Zhao Y . The nonopsonic allogeneic cell phagocytosis of macrophages detected by flow cytometry and two photon fluorescence microscope. Transpl Immunol 2006; 16: 220–226.

    Article  CAS  PubMed  Google Scholar 

  35. Van Ginderachter JA, Meerschaut S, Liu Y, Brys L, de Groeve K, Hassanzadeh Ghassabeh G et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood 2006; 108: 525–535.

    Article  CAS  PubMed  Google Scholar 

  36. Liu G, Yang K, Burns S, Shrestha S, Chi H . The S1P1–mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nat Immunol 2010; 11: 1047–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tzachanis D, Berezovskaya A, Nadler LM, Boussiotis VA . Blockade of B7/CD28 in mixed lymphocyte reaction cultures results in the generation of alternatively activated macrophages, which suppress T-cell responses. Blood 2002; 99: 1465–1473.

    Article  CAS  PubMed  Google Scholar 

  38. Martinez FO, Gordon S, Locati M, Mantovani A . Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7303–7311.

    Article  CAS  PubMed  Google Scholar 

  39. Hoves S, Krause SW, Schutz C, Halbritter D, Scholmerich J, Herfarth H et al. Monocyte-derived human macrophages mediate anergy in allogeneic T cells and induce regulatory T cells. J Immunol 2006; 177: 2691–2698.

    Article  CAS  PubMed  Google Scholar 

  40. Raes G, Beschin A, Ghassabeh GH, de Baetselier P . Alternatively activated macrophages in protozoan infections. Curr Opin Immunol 2007; 19: 454–459.

    Article  CAS  PubMed  Google Scholar 

  41. Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 2007; 179: 3926–3936.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa K, Funaba M, Chen Y, Tsujimoto M . Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol 2006; 177: 6787–6794.

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani A, Locati M . Orchestration of macrophage polarization. Blood 2009; 114: 3135–3136.

    Article  CAS  PubMed  Google Scholar 

  44. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA 2009; 106: 14978–14983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs Shuping Zhou and Zeqing Niu for their kind review of the manuscript, Ms Jing Wang, Mr Yabing Liu and Ms Xiaoqiu Liu for their expert technical assistance, Ms Qinghuan Li and Jianxia Peng for their excellent laboratory management and Mr Baisheng Ren for his outstanding animal husbandry. This work was supported by grants from the National Natural Science Foundation (C81072396, U0832003, YZ; C31171407 and 81273201, GL), the Ministry of Science and Technology of China (2010CB945301, YZ) and the Chinese Academy of Sciences for Distinguished Young Scientists (KSCX2-EW-Q-7, GL)..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Ethics declarations

Competing interests

The authors have declared that no conflict of interests exists.

Additional information

Supplementary Information accompanies the paper on Cellar & Molecular Immunology's website (http://www.nature.com/cmi)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Liu, G., Hou, Y. et al. Induction of M2-like macrophages in recipient NOD-scid mice by allogeneic donor CD4+CD25+ regulatory T cells. Cell Mol Immunol 9, 464–472 (2012). https://doi.org/10.1038/cmi.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.47

Keywords

This article is cited by

Search

Quick links