Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis

Abstract

Mesenchymal stem cells (MSCs) have been used experimentally for treating inflammatory disorders, partly due to their immunosuppressive properties. Although interleukin-1β (IL-1β) is one of the most important inflammatory mediators, growing evidence indicates that IL-1β signaling elicits the immunosuppressive properties of MSCs. However, it remains unclear how IL-1β signaling accomplishes this activity. Here, we focus on the therapeutic efficacy of IL-1β-primed MSCs in the dextran sulfate sodium (DSS)-induced colitis model, in addition to the underlining mechanisms. We first found that IL-1β-primed MSCs, without any observable phenotype change in vitro, significantly attenuated the development of DSS-induced murine colitis. Moreover, IL-1β-primed MSCs modulated the balance of immune cells in the spleen and the mesenteric lymph nodes (MLNs) through elevating cyclooxygenase-2 (COX-2), IL-6 and IL-8 expression and influencing the polarization of peritoneal macrophages. Importantly, IL-1β-primed MSCs possessed an enhanced ability to migrate to the inflammatory site of the gut via upregulation of chemokine receptor type 4 (CXCR4) expression. In summary, IL-1β-primed MSCs have improved efficacy in treating DSS-induced colitis, which at least partly depends on their increased immunosuppressive capacities and enhanced migration ability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tsagias N, Koliakos I, Karagiannis V, Eleftheriadou M, Koliakos GG . Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med 2011; 21: 253–261.

    Article  CAS  PubMed  Google Scholar 

  2. Liang L, Dong C, Chen X, Fang Z, Xu J, Liu M et al. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis. Cell Transplant 2011; 20: 1395–1408.

    Article  PubMed  Google Scholar 

  3. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M . Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136: 978–989.

    Article  PubMed  Google Scholar 

  4. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M . Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 2009; 60: 1006–1019.

    Article  PubMed  Google Scholar 

  5. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15: 42–49.

    Article  PubMed  Google Scholar 

  6. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104: 3581–3587.

    Article  CAS  PubMed  Google Scholar 

  7. Wojakowski W, Tendera M . Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes. Folia Histochem Cytobiol 2005; 43: 229–232.

    PubMed  Google Scholar 

  8. Chamberlain G, Fox J, Ashton B, Middleton J . Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features and potential for homing. Stem Cells 2007; 25: 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  9. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I . The role of mesenchymal stem cells in haemopoiesis. Blood Rev 2006; 20: 161–171.

    Article  CAS  PubMed  Google Scholar 

  10. Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z et al. MCP-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 2007; 25: 245–251.

    Article  CAS  PubMed  Google Scholar 

  11. Ryan JM, Barry F, Murphy JM, Mahon BP . Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 2007; 149: 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon KH, Murakami A, Hayashi R, Ohigashi H . Interleukin-1β targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis. Biochem Biophys Res Commun 2005; 337( 2): 647–654.

    Article  CAS  PubMed  Google Scholar 

  13. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R . A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98: 694–702.

    Article  CAS  PubMed  Google Scholar 

  14. Arai Y, Takanashi H, Kitagawa H, Okayasu I . Involvement of interleuking-1 in the development of ulceratie colitis inducted by dextran sulfate sodiium in mice. Cytokine 1998; 10: 890–896.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010; 59: 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  16. Lebeis SL, Powell KR, Merlin D, Sherman MA, Kalman D . Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 2009; 77: 604–614.

    Article  CAS  PubMed  Google Scholar 

  17. Kojouharoff G, Hans W, Obermeier F, Männel DN, Andus T, Schölmerich J et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol 1997; 107: 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. González-Navajas JM, Law J, Nguyen KP, Bhargava M, Corr MP, Varki N et al. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J Exp Med 2010; 207: 2799–2807.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin M, Neumann D, Hoff T, Resch K, DeWitt DL, Goppelt-Struebe M . Interleukin-1-induced cyclooxygenase 2 expression is suppressed by cyclosporin A in rat mesangial cells. Kidney Int 1994; 45: 150–158.

    Article  CAS  PubMed  Google Scholar 

  20. Mizel SB, Dayer JM, Krane SM, Mergenhagen SE . Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (interleukin 1). Proc Natl Acad Sci U S A 1981; 78: 2474–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 2002; 109: 883–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nitta M, Hirata I, Toshina K, Murano M, Maemura K, Hamamoto N et al. Expression of the EP4 prostaglandin E2 receptor subtype with rat dextran sodium sulphate colitis: colitis suppression by a selective agonist, ONO-AE1-329. Scand J Immunol 2002; 56: 66–75.

    Article  CAS  PubMed  Google Scholar 

  23. Cominelli F, Nast CC, Llerena R, Dinarello CA, Zipser RD . Interleukin 1 suppresses inflammation in rabbit colitis. Mediation by endogenous prostaglandins. J Clin Invest 1990; 85: 582–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groh ME, Maitra B, Szekely E, Koç ON . Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005; 33: 928–934.

    Article  CAS  PubMed  Google Scholar 

  25. Liu CH, Hwang SM . Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005; 32: 270–279.

    Article  CAS  PubMed  Google Scholar 

  26. Lasigliè D, Traggiai E, Federici S, Alessio M, Buoncompagni A, Accogli A et al. Role of IL-1 beta in the development of human TH17 cells: lesson from NLPR3 mutated patients. PLoS One 2011; 6: e20014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009; 183: 7787–7798.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M . Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929–939.

    Article  CAS  PubMed  Google Scholar 

  29. Kao AP, Wang KH, Long CY, Chai CY, Tsai CF, Hsieh TH et al. Interleukin-1β induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. Fertil Steril 2011; 96: 678–684.

    Article  CAS  PubMed  Google Scholar 

  30. Ji JF, He BP, Dheen ST, Tay SS . Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 2004; 22: 415–427.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008; 16: 571–579.

    Article  CAS  PubMed  Google Scholar 

  32. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141–150.

    Article  CAS  PubMed  Google Scholar 

  33. Najar M, Raicevic G, Boufker HI, Fayyad Kazan H, de Bruyn C, Meuleman N et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cell Immunol 2010; 264: 171–179.

    Article  CAS  PubMed  Google Scholar 

  34. Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J . Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 2009; 182: 7963–7973.

    Article  CAS  PubMed  Google Scholar 

  35. Bouffi C, Bony C, Courties G, Jorgensen C, Noël D . IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. Plos One 2010; 5: e14247.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS . Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 2009; 108: 577–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Zhao, G., Liu, L. et al. Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9, 473–481 (2012). https://doi.org/10.1038/cmi.2012.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.40

Keywords

This article is cited by

Search

Quick links