Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

What lessons can be learned from γδ T cell-based cancer immunotherapy trials?

Abstract

During the last several years, research has produced a significant amount of knowledge concerning the characteristics of human γδ T lymphocytes. Findings regarding the immune functions of these cells, particularly their natural killer cell-like lytic activity against tumor cells, have raised expectations for the therapeutic applications of these cells for cancer. Pharmaceutical companies have produced selective agonists for these lymphocytes, and several teams have launched clinical trials of γδ T cell-based cancer therapies. The findings from these studies include hematological malignancies (follicular lymphoma, multiple myeloma, acute and chronic myeloid leukemia), as well as solid tumors (renal cell, breast and prostate carcinomas), consisting of samples from more than 250 patients from Europe, Japan and the United States. The results of these pioneering studies are now available, and this short review summarizes the lessons learned and the role of γδ T cell-based strategies in the current landscape of cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Meraviglia S, Caccamo N, Guggino G, Tolomeo M, Siragusa S, Stassi G et al. Optimizing tumor-reactive γδ T cells for antibody-based cancer immunotherapy. Curr Mol Med 2010; 10: 719–726.

    Article  CAS  Google Scholar 

  2. Kabelitz D . Human γδ T lymphocytes for immunotherapeutic strategies against cancer. F1000 Med Rep 2010; 2: 45.

    Article  Google Scholar 

  3. Kunzmann V, Wilhelm M . Adjuvant zoledronic acid for breast cancer: mechanism of action? Lancet Oncol 2011; 12: 991–992.

    Article  Google Scholar 

  4. Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L . Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 2012; 33: 199–206.

    Article  CAS  Google Scholar 

  5. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci U S A 1999; 96: 6879–6884.

    Article  CAS  Google Scholar 

  6. Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E et al. Vγ9Vδ2T cell response to colon carcinoma cells. J Immunol 2005; 175: 5481–5488.

    Article  CAS  Google Scholar 

  7. Viey E, Laplace C, Escudier B . Peripheral γδ T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 2005; 5: 973–986.

    Article  CAS  Google Scholar 

  8. Dechanet J, Merville P, Berge F, Bone-Mane G, Taupin JL, Michel P et al. Major expansion of γδ T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J Infect Dis 1999; 179: 1–8.

    Article  CAS  Google Scholar 

  9. Viey E, Lucas C, Romagne F, Escudier B, Chouaib S, Caignard A . Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vγ9Vδ2 T cells from renal cell carcinoma patients. J Immunother 2008; 31: 313–323.

    Article  CAS  Google Scholar 

  10. Inman BA, Frigola X, Harris KJ, Kuntz SM, Lohse CM, Leibovich BC et al. Questionable relevance of γδ T lymphocytes in renal cell carcinoma. J Immunol 2008; 180: 3578–3584.

    Article  CAS  Google Scholar 

  11. Zheng BJ, Ng SP, Chua DT, Sham JS, Kwong DL, Lam CK et al. Peripheral γδ T-cell deficit in nasopharyngeal carcinoma. Int J Cancer 2002; 99: 213–217.

    Article  CAS  Google Scholar 

  12. Zheng BJ, Chan KW, Im S, Chua D, Sham JS, Tin PC et al. Anti-tumor effects of human peripheral γδ T cells in a mouse tumor model. Int J Cancer 2001; 92: 421–425.

    Article  CAS  Google Scholar 

  13. Capietto AH, Martinet L, Fournie JJ . Stimulated γδ T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J Immunol 2011; 187: 1031–1038.

    Article  CAS  Google Scholar 

  14. Yuasa T, Sato K, Ashihara E, Takeuchi M, Maita S, Tsuchiya N et al. Intravesical administration of γδ T cells successfully prevents the growth of bladder cancer in the murine model. Cancer Immunol Immunother 2009; 58: 493–502.

    Article  CAS  Google Scholar 

  15. Gertner-Dardenne J, Bonnafous C, Bezombes C, Capietto AH, Scaglione V, Ingoure S et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 2009; 113: 4875–4884.

    Article  CAS  Google Scholar 

  16. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K et al. Clinical evaluation of autologous γδ T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 2011; 105: 778–786.

    Article  CAS  Google Scholar 

  17. Bialasiewicz AA, Ma JX, Richard G . α/β and γ/δ TCR+ lymphocyte infiltration in necrotising choroidal melanomas. Br J Ophthalmol 1999; 83: 1069–1073.

    Article  CAS  Google Scholar 

  18. Devaud C, Bilhere E, Loizon S, Pitard V, Behr C, Moreau J et al. Antitumor activity of γδ T cells reactive against cytomegalovirus-infected cells in a mouse xenograft tumor model. Cancer Res 2009; 69: 3971–3978.

    Article  CAS  Google Scholar 

  19. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF . Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like receptor signaling pathway. Immunity 2007; 27: 334–348.

    Article  CAS  Google Scholar 

  20. Ke Y, Kapp LM, Kapp JA . Inhibition of tumor rejection by γδ T cells and IL-10. Cell Immunol 2003; 221: 107–114.

    Article  CAS  Google Scholar 

  21. Sicard H, Al Saati T, Delsol G, Fournie JJ . Synthetic phosphoantigens enhance human Vγ9Vδ2 T lymphocytes killing of non-Hodgkin's B lymphoma. Mol Med 2001; 7: 711–722.

    Article  CAS  Google Scholar 

  22. Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A et al. Human Vγ9Vδ2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol 2012; 188: 4701–4708.

    Article  CAS  Google Scholar 

  23. D'Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M et al. Vγ9Vδ2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 2010; 184: 3260–3268.

    Article  CAS  Google Scholar 

  24. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M . Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.

    CAS  PubMed  Google Scholar 

  25. Burjanadze M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C et al. In vitro expansion of γδ T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol 2007; 139: 206–216.

    Article  CAS  Google Scholar 

  26. Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S et al. Characterization and immunotherapeutic potential of γδ T-cells in patients with glioblastoma. Neuro Oncol 2009; 11: 357–367.

    Article  CAS  Google Scholar 

  27. Lamb LS Jr . γδ T cells as immune effectors against high-grade gliomas. Immunol Res 2009; 45: 85–95.

    Article  Google Scholar 

  28. Kabelitz D, Wesch D, Pitters E, Zoller M . Potential of human γδ T lymphocytes for immunotherapy of cancer. Int J Cancer 2004; 112: 727–732.

    Article  CAS  Google Scholar 

  29. Bonneville M, O'Brien RL, Born WK . γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10: 467–478.

    Article  CAS  Google Scholar 

  30. Belmant C, Decise D, Fournie JJ . Phosphoantigens and aminobisphosphonates: New leads targeting γδ T lymphocytes for cancer immunotherapy. Drug Discov Today 2006; 3: 17–23.

    Google Scholar 

  31. Thompson K, Rogers MJ . Statins prevent bisphosphonate-induced γ,δ-T-cell proliferation and activation in vitro. J Bone Miner Res 2004; 19: 278–288.

    Article  CAS  Google Scholar 

  32. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 200–206.

    Article  CAS  Google Scholar 

  33. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F et al. Induction of γδ T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 2003; 102: 2310–2311.

    Article  CAS  Google Scholar 

  34. Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol Immunother 2011; 60: 1447–1460.

    Article  CAS  Google Scholar 

  35. Naoe M, Ogawa Y, Takeshita K, Morita J, Shichijo T, Fuji K et al. Zoledronate stimulates γδ T cells in prostate cancer patients. Oncol Res 2010; 18: 493–501.

    Article  Google Scholar 

  36. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 2007; 67: 7450–7457.

    Article  CAS  Google Scholar 

  37. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 2010; 161: 290–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bennouna J, Levy V, Sicard H, Senellart H, Audrain M, Hiret S et al. Phase I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vγ9Vδ2 T lymphocyte agonist in patients with solid tumors. Cancer Immunol Immunother 2010; 59: 1521–1530.

    Article  CAS  Google Scholar 

  39. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C et al. Phase-I study of Innacell γδ, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2008; 57: 1599–1609.

    Article  CAS  Google Scholar 

  40. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γ-δ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56: 469–476.

    Article  CAS  Google Scholar 

  41. Kobayashi H, Tanaka Y, Nakazawa H, Yagi J, Minato N, Tanabe K . A new indicator of favorable prognosis in locally advanced renal cell carcinomas: γδ T-cells in peripheral blood. Anticancer Res 2011; 31: 1027–1031.

    PubMed  Google Scholar 

  42. Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K, Sato S et al. Zoledronate facilitates large-scale ex vivo expansion of functional γδ T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 2008; 10: 842–856.

    Article  CAS  Google Scholar 

  43. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T et al. Clinical and immunological evaluation of zoledronate-activated Vγ9γδ T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 2009; 37: 956–968.

    Article  CAS  Google Scholar 

  44. Noguchi A, Kaneko T, Kamigaki T, Fujimoto K, Ozawa M, Saito M et al. Zoledronate-activated Vγ9γδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Cytotherapy 2011; 13: 92–97.

    Article  CAS  Google Scholar 

  45. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells. Eur J Cardiothorac Surg 2010; 37: 1191–1197.

    Article  Google Scholar 

  46. Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M et al. In vivo immunomanipulation of Vγ9Vδ2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 2005; 175: 5471–5480.

    Article  CAS  Google Scholar 

  47. Kunzmann V, Kimmel B, Herrmann T, Einsele H, Wilhelm M . Inhibition of phosphoantigen-mediated γδ T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells. Immunology 2009; 126: 256–267.

    Article  CAS  Google Scholar 

  48. Casetti R, Agrati C, Wallace M, Sacchi A, Martini F, Martino A et al. Cutting edge: TGF-beta1 and IL-15 induce FOXP3+ γδ regulatory T cells in the presence of antigen stimulation. J Immunol 2009; 183: 3574–3577.

    Article  CAS  Google Scholar 

  49. Gong G, Shao L, Wang Y, Chen CY, Huang D, Yao S et al. Phosphoantigen-activated Vγ2Vδ2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 2009; 113: 837–845.

    Article  CAS  Google Scholar 

  50. Capietto AH, Martinet L, Cendron D, Fruchon S, Pont F, Fournie JJ . Phosphoantigens overcome human TCRVγ9+ γδ Cell immunosuppression by TGF-β: relevance for cancer immunotherapy. J Immunol 2010; 184: 6680–6687.

    Article  CAS  Google Scholar 

  51. Salot S, Bercegeay S, Dreno B, Saiagh S, Scaglione V, Bonnafous C et al. Large scale expansion of Vγ9Vδ2 T lymphocytes from human peripheral blood mononuclear cells after a positive selection using MACS ‘TCR γ/δ+ T cell isolation kit’. J Immunol Methods 2009; 347: 12–18.

    Article  CAS  Google Scholar 

  52. Cendron D, Ingoure S, Martino A, Casetti R, Horand F, Romagne F et al. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct γδ and alphabeta T cell responses in primates. Eur J Immunol 2007; 37: 549–565.

    Article  CAS  Google Scholar 

  53. Kunzmann V, Smetak M, Kimmel B, Weigang-Koehler K, Goebeler M, Birkmann J et al. Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: results from a prospective phase I/II trial. J Immunother 2012; 35: 205–213.

    Article  CAS  Google Scholar 

  54. Pont F, Familiades J, Dejean S, Fruchon S, Cendron D, Poupot M et al. The gene expression profile of phosphoantigen-specific human γδ T lymphocytes is a blend of alphabeta T-cell and NK-cell signatures. Eur J Immunol 2012; 42: 228–240.

    Article  CAS  Google Scholar 

  55. Martinet L, Poupot R, Fournie JJ . Pitfalls on the roadmap to γδ T cell-based cancer immunotherapies. Immunol Lett 2009; 124: 1–8.

    Article  CAS  Google Scholar 

  56. Capietto AH, Martinet L, Fournie JJ . How tumors might withstand γδ T-cell attack. Cell Mol Life Sci 2011; 68: 2433–2442.

    Article  CAS  Google Scholar 

  57. Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R . PGE2 inhibits natural killer and γδ T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol 2010; 80: 838–845.

    Article  CAS  Google Scholar 

  58. Martinet L, Fleury-Cappellesso S, Gadelorge M, Dietrich G, Bourin P, Fournie JJ et al. A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 2009; 39: 752–762.

    Article  CAS  Google Scholar 

  59. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 2011; 20: 728–740.

    Article  CAS  Google Scholar 

  60. Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL . CD70 expression patterns in renal cell carcinoma. Hum Pathol 2012; 43: 1394–9.

    Article  CAS  Google Scholar 

  61. Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eggeling F . Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia 2006; 8: 933–938.

    Article  CAS  Google Scholar 

  62. Biswas K, Richmond A, Rayman P, Biswas S, Thornton M, Sa G et al. GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res 2006; 66: 6816–6825.

    Article  CAS  Google Scholar 

  63. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 2002; 99: 754–758.

    Article  CAS  Google Scholar 

  64. Cartron G, Trappe RU, Solal-Celigny P, Hallek M . Interindividual variability of response to rituximab: from biological origins to individualized therapies. Clin Cancer Res 2011; 17: 19–30.

    Article  CAS  Google Scholar 

  65. Zitvogel L, Kepp O, Kroemer G . Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8: 151–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Fournié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournié, JJ., Sicard, H., Poupot, M. et al. What lessons can be learned from γδ T cell-based cancer immunotherapy trials?. Cell Mol Immunol 10, 35–41 (2013). https://doi.org/10.1038/cmi.2012.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.39

Keywords

This article is cited by

Search

Quick links