Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Germinal center kinases in immune regulation

Abstract

Germinal center kinases (GCKs) participate in a variety of signaling pathways needed to regulate cellular functions including apoptosis, cell proliferation, polarity and migration. Recent studies have shown that GCKs are participants in both adaptive and innate immune regulation. However, the differential activation and regulatory mechanisms of GCKs, as well as upstream and downstream signaling molecules, remain to be fully defined. It remains unresolved whether and how GCKs may cross-talk with existing signaling pathways. This review stresses the progresses in research of GCKs relevant to the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  PubMed  Google Scholar 

  2. Boomer JS, Tan TH . Functional interactions of HPK1 with adaptor proteins. J Cell Biochem 2005; 95: 34–44.

    Article  CAS  PubMed  Google Scholar 

  3. Hu MC, Wang Y, Qiu WR, Mikhail A, Meyer CF, Tan TH . Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IkappaB kinases (IKK-alpha/beta) and IKK-beta is a developmentally regulated protein kinase. Oncogene 1999; 18: 5514–5524.

    Article  CAS  PubMed  Google Scholar 

  4. Brenner D, Brechmann M, Rohling S, Tapernoux M, Mock T, Winter D et al. Phosphorylation of CARMA1 by HPK1 is critical for NF-kappaB activation in T cells. Proc Natl Acad Sci USA 2009; 106: 14508–14513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chuang HC, Lan JL, Chen DY, Yang CY, Chen YM, Li JP et al. The kinase GLK controls autoimmunity and NF-kappaB signaling by activating the kinase PKC-theta in T cells. Nat Immunol 2012; 12: 1113–1118.

    Article  CAS  Google Scholar 

  6. Hu MC, Qiu WR, Wang X, Meyer CF, Tan TH . Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev 1996; 10: 2251–2264.

    Article  CAS  PubMed  Google Scholar 

  7. Arnold R, Liou J, Drexler HC, Weiss A, Kiefer F . Caspase-mediated cleavage of hematopoietic progenitor kinase 1 (HPK1) converts an activator of NFkappaB into an inhibitor of NFkappaB. J Biol Chem 2001; 276: 14675–14684.

    Article  CAS  PubMed  Google Scholar 

  8. Brenner D, Golks A, Kiefer F, Krammer PH, Arnold R . Activation or suppression of NFkappaB by HPK1 determines sensitivity to activation-induced cell death. EMBO J 2005; 24: 4279–4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brenner D, Golks A, Becker M, Muller W, Frey CR, Novak R et al. Caspase-cleaved HPK1 induces CD95L-independent activation-induced cell death in T and B lymphocytes. Blood 2007; 110: 3968–3977.

    Article  CAS  PubMed  Google Scholar 

  10. Patzak IM, Konigsberger S, Suzuki A, Mak TW, Kiefer F . HPK1 competes with ADAP for SLP-76 binding and via Rap1 negatively affects T-cell adhesion. Eur J Immunol 2010; 40: 3220–3225.

    Article  CAS  PubMed  Google Scholar 

  11. Konigsberger S, Peckl-Schmid D, Zaborsky N, Patzak I, Kiefer F, Achatz G . HPK1 associates with SKAP-HOM to negatively regulate Rap1-mediated B-lymphocyte adhesion. PLoS ONE 2010; 5: e12468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Katagiri K, Imamura M, Kinashi T . Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 2006; 7: 919–928.

    Article  CAS  PubMed  Google Scholar 

  13. Katz P, Whalen G, Kehrl JH . Differential expression of a novel protein kinase in human B lymphocytes. Preferential localization in the germinal center. J Biol Chem 1994; 269: 16802–16809.

    Article  CAS  PubMed  Google Scholar 

  14. Zhong J, Gavrilescu LC, Molnar A, Murray L, Garafalo S, Kehrl JH et al. GCK is essential to systemic inflammation and pattern recognition receptor signaling to JNK and p38. Proc Natl Acad Sci USA 2009; 106: 4372–4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang J, Wu S, Barrera J, Matthews K, Pan D . The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005; 122: 421–434.

    Article  CAS  PubMed  Google Scholar 

  16. Liu AM, Wong KF, Jiang X, Qiao Y, Luk JM . Regulators of mammalian Hippo pathway in cancer. Biochim Biophys Acta 2012; 1826: 357–364.

    CAS  PubMed  Google Scholar 

  17. Hwang E, Ryu KS, Paakkonen K, Guntert P, Cheong HK, Lim DS et al. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA 2007; 104: 9236–9241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J . Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 2004; 381: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J 1998; 17: 2224–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA . Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 2001; 276: 14909–14915.

    Article  CAS  PubMed  Google Scholar 

  21. Glantschnig H, Rodan GA, Reszka AA . Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem 2002; 277: 42987–42996.

    Article  CAS  PubMed  Google Scholar 

  22. Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S . MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 2001; 276: 19276–19285.

    Article  CAS  PubMed  Google Scholar 

  23. Song JJ, Lee YJ . Differential cleavage of Mst1 by caspase-7/-3 is responsible for TRAIL-induced activation of the MAPK superfamily. Cell Signal 2008; 20: 892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mou F, Praskova M, Xia F, van Buren D, Hock H, Avruch J et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med 2012; 209: 741–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N et al. The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 2007; 26: 4523–4534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou D, Medoff BD, Chen L, Li L, Zhang XF, Praskova M et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naive T cells. Proc Natl Acad Sci USA 2008; 105: 20321–20326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi J, Oh S, Lee D, Oh HJ, Park JY, Lee SB et al. Mst1-FoxO signaling protects Naive T lymphocytes from cellular oxidative stress in mice. PLoS ONE 2009; 4: e8011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nehme NT, Pachlopnik Schmid J, Debeurme F, Andre-Schmutz I, Lim A, Nitschke P et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T cells survival. Blood 2012; 119: 3458–3468.

    Article  CAS  PubMed  Google Scholar 

  29. Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schaffer AA et al. The phenotype of human STK4 deficiency. Blood 2012; 119: 3450–3457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong Y, Du X, Ye J, Han M, Xu T, Zhuang Y et al. A cell-intrinsic role for Mst1 in regulating thymocyte egress. J Immunol 2009; 183: 3865–3872.

    Article  CAS  PubMed  Google Scholar 

  31. Kliche S, Worbs T, Wang X, Degen J, Patzak I, Meineke B et al. CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules. Blood 2012; 119: 777–785.

    Article  CAS  PubMed  Google Scholar 

  32. Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T . Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J 2009; 28: 1319–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA . TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001; 3: 708–714.

    Article  CAS  PubMed  Google Scholar 

  34. Leal-Sanchez J, Couzinet A, Rossin A, Abdel-Sater F, Chakrabandhu K, Luci C et al. Requirement for Daxx in mature T-cell proliferation and activation. Cell Death Differ 2007; 14: 795–806.

    Article  CAS  PubMed  Google Scholar 

  35. Huang L, Xu GL, Zhang JQ, Tian L, Xue JL, Chen JZ et al. Daxx interacts with HIV-1 integrase and inhibits lentiviral gene expression. Biochem Biophys Res Commun 2008; 373: 241–245.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang J, Kalejta RF . Human cytomegalovirus protein pp71 induces Daxx SUMOylation. J Virol 2009; 83: 6591–6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, Wongwiwat W, Malasit P et al. Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res 2010; 147: 275–283.

    Article  CAS  PubMed  Google Scholar 

  38. Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P et al. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 2010; 84: 7029–7038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A . The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010; 24: 1253–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schreiner S, Wimmer P, Groitl P, Chen SY, Blanchette P, Branton PE et al. Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85: 8752–8765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwang J, Kalejta RF . In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induced Daxx sumoylation. Methods 2011; 55: 160–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsai K, Thikmyanova N, Wojcechowskyj JA, Delecluse HJ, Lieberman PM . EBV tegument protein BNRF1 disrupts DAXX–ATRX to activate viral early gene transcription. PLoS Pathog 2011; 7: e1002376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khunchai S, Junking M, Suttitheptumrong A, Yasamut U, Sawasdee N, Netsawang J et al. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production. Biochem Biophys Res Commun 2012; 423: 398–403.

    Article  CAS  PubMed  Google Scholar 

  44. Yun HJ, Yoon JH, Lee JK, Noh KT, Yoon KW, Oh SP et al. Daxx mediates activation-induced cell death in microglia by triggering MST1 signalling. EMBO J 2011; 30: 2465–2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giovinazzi S, Lindsay CR, Morozov VM, Escobar-Cabrera E, Summers MK, Han HS et al. Regulation of mitosis and taxane response by Daxx and Rassf1. Oncogene 2012; 31: 13–26.

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Du ZY, He JL, Liu XQ, Yu QB, Wang YX . FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis. Mol Biol Rep 2012; 39: 873–879.

    Article  CAS  PubMed  Google Scholar 

  47. Ishii T, Warabi E, Yanagawa T . Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J Clin Biochem Nutr 2012; 50: 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morinaka A, Funato Y, Uesugi K, Miki H . Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis. Oncogene 2011; 30: 4208–4218.

    Article  CAS  PubMed  Google Scholar 

  49. Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH et al. Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 2007; 282: 22011–22022.

    Article  CAS  PubMed  Google Scholar 

  50. Matsumura T, Okamoto K, Iwahara S, Hori H, Takahashi Y, Nishino T et al. Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys peroxiredoxin: disulfide formation at dimer–dimer interfaces is not essential for decamerization. J Biol Chem 2008; 283: 284–293.

    Article  CAS  PubMed  Google Scholar 

  51. Jin Y, Dong L, Lu Y, Wu W, Hao Q, Zhou Z et al. Dimerization and cytoplasmic localization regulate Hippo kinase signaling activity in organ size control. J Biol Chem 2012; 287: 5784–5796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang CY, Wu YM, Hsu CY, Lee WS, Lai MD, Lu TJ et al. Caspase activation of mammalian sterile 20-like kinase 3 (Mst3). Nuclear translocation and induction of apoptosis. J Biol Chem 2002; 277: 34367–34374.

    Article  CAS  PubMed  Google Scholar 

  53. Preisinger C, Short B, de Corte V, Bruyneel E, Haas A, Kopajtich R et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14–3–3zeta. J Cell Biol 2004; 164: 1009–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Ma X, Deng X, Chen Y, Mo X, Zhang Y et al. PDCD10 interacts with STK25 to accelerate cell apoptosis under oxidative stress. Front Biosci 2012; 17: 2295–2305.

    Article  CAS  Google Scholar 

  55. Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA et al. Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 2010; 143: 826–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qian Z, Lin C, Espinosa R, LeBeau M, Rosner MR . Cloning and characterization of MST4, a novel Ste20-like kinase. J Biol Chem 2001; 276: 22439–22445.

    Article  CAS  PubMed  Google Scholar 

  57. Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM . MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 2001; 20: 6559–6569.

    Article  CAS  PubMed  Google Scholar 

  58. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM . Structure of the LKB1–STRAD–MO25 complex reveals an allosteric mechanism of kinase activation. Science 2009; 326: 1707–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. ten Klooster JP, Jansen M, Yuan J, Oorschot V, Begthel H, Di Giacomo V et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev Cell 2009; 16: 551–562.

    Article  CAS  PubMed  Google Scholar 

  60. Milburn CC, Boudeau J, Deak M, Alessi DR, van Aalten DM . Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Nat Struct Mol Biol 2004; 11: 193–200.

    Article  CAS  PubMed  Google Scholar 

  61. Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D et al. Analysis of the LKB1–STRAD–MO25 complex. J Cell Sci 2004; 117: 6365–6375.

    Article  CAS  PubMed  Google Scholar 

  62. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bignell GR, Barfoot R, Seal S, Collins N, Warren W, Stratton MR . Low frequency of somatic mutations in the LKB1/Peutz–Jeghers syndrome gene in sporadic breast cancer. Cancer Res 1998; 58: 1384–1386.

    CAS  PubMed  Google Scholar 

  64. Contreras CM, Akbay EA, Gallardo TD, Haynie JM, Sharma S, Tagao O et al. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Dis Model Mech 2010; 3: 181–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han S, Khuri FR, Roman J . Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 2006; 66: 315–323.

    Article  CAS  PubMed  Google Scholar 

  66. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  67. Sato N, Rosty C, Jansen M, Fukushima N, Ueki T, Yeo CJ et al. STK11/LKB1 Peutz–Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 2001; 159: 2017–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz–Jeghers syndrome. Oncogene 2000; 19: 164–168.

    Article  CAS  PubMed  Google Scholar 

  69. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  70. Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 2007; 26: 5911–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Resta N, Simone C, Mareni C, Montera M, Gentile M, Susca F et al. STK11 mutations in Peutz–Jeghers syndrome and sporadic colon cancer. Cancer Res 1998; 58: 4799–4801.

    CAS  PubMed  Google Scholar 

  72. Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA et al. AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol Cell 2010; 39: 873–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cao Y, Li H, Liu H, Zhang M, Hua Z, Ji H et al. LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection. EMBO J 2011; 30: 2083–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X . The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res 2010; 20: 99–108.

    Article  CAS  PubMed  Google Scholar 

  75. Moser TS, Schieffer D, Cherry S . AMP-activated kinase restricts rift valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 2012; 8: e1002661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Filippi BM, de los Heros P, Mehellou Y, Navratilova I, Gourlay R, Deak M et al. MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. EMBO J 2011; 30: 1730–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fidalgo M, Fraile M, Pires A, Force T, Pombo C, Zalvide J . CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation. J Cell Sci 2010; 123: 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  78. Ma X, Zhao H, Shan J, Long F, Chen Y, Zhang Y et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol Biol Cell 2007; 18: 1965–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li X, Zhang R, Zhang H, He Y, Ji W, Min W et al. Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem 2010; 285: 24099–24107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lauenborg B, Kopp K, Krejsgaard T, Eriksen KW, Geisler C, Dabelsteen S et al. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis. APMIS 2010; 118: 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC et al. CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 2011; 286: 25056–25064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B et al. Structure–function analysis of core STRIPAK proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 2011; 286: 25065–25075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanchez-Gonzalez P, Jellali K, Villalobo A . Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2010; 277: 327–342.

    Article  CAS  PubMed  Google Scholar 

  84. Skelding KA, Rostas JA, Verrills NM . Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle 2011; 10: 631–639.

    Article  CAS  PubMed  Google Scholar 

  85. Grabarek Z . Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Biochim Biophys Acta 2011; 1813: 913–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bozym RA, Delorme-Axford E, Harris K, Morosky S, Ikizler M, Dermody TS et al. Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling. Cell Host Microbe 2012; 11: 153–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Semaan N, Alsaleh G, Gottenberg JE, Wachsmann D, Sibilia J . Etk/BMX, a Btk family tyrosine kinase, and Mal contribute to the cross-talk between MyD88 and FAK pathways. J Immunol 2008; 180: 3485–3491.

    Article  CAS  PubMed  Google Scholar 

  88. Garron ML, Arthos J, Guichou JF, McNally J, Cicala C, Arold ST . Structural basis for the interaction between focal adhesion kinase and CD4. J Mol Biol 2008; 375: 1320–1328.

    Article  CAS  PubMed  Google Scholar 

  89. Schaller MD . Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  90. Hall JE, Fu W, Schaller MD . Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 2011; 288: 185–225.

    Article  CAS  PubMed  Google Scholar 

  91. Lowe M, Rabouille C, Nakamura N, Watson R, Jackman M, Jamsa E et al. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 1998; 94: 783–793.

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G . The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 1997; 89: 445–455.

    Article  CAS  PubMed  Google Scholar 

  93. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P et al. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 1995; 131: 1715–1726.

    Article  CAS  PubMed  Google Scholar 

  94. Murwantoko, Yano M, Ueta Y, Murasaki A, Kanda H, Oka C et al. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem J 2004; 381: 895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Clements A, Smollett K, Lee SF, Hartland EL, Lowe M, Frankel G . EspG of enteropathogenic and enterohemorrhagic E. coli binds the Golgi matrix protein GM130 and disrupts the Golgi structure and function. Cell Microbiol 2011; 13: 1429–1439.

    Article  CAS  PubMed  Google Scholar 

  96. Fuller SJ, McGuffin LJ, Marshall AK, Giraldo A, Pikkarainen S, Clerk A et al. A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3). Biochem J 2012; 442: 595–610.

    Article  CAS  PubMed  Google Scholar 

  97. Ribeiro PS, Josue F, Wepf A, Wehr MC, Rinner O, Kelly G et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell 2010; 39: 521–534.

    Article  CAS  PubMed  Google Scholar 

  98. Hyodo T, Ito S, Hasegawa H, Asano E, Maeda M, Urano T et al. Misshapen-like kinase 1 (MINK1) is a novel component of striatin interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 2012; 287: 25019–25029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fehon RG, McClatchey AI, Bretscher A . Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 2010; 11: 276–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Neisch AL, Fehon RG . Ezrin, Radixin and moesin: key regulators of membrane–cortex interactions and signaling. Curr Opin Cell Biol 2011; 23: 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arpin M, Chirivino D, Naba A, Zwaenepoel I . Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 2011; 5: 199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shaffer MH, Dupree RS, Zhu P, Saotome I, Schmidt RF, McClatchey AI et al. Ezrin and moesin function together to promote T cell activation. J Immunol 2009; 182: 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  103. Allenspach EJ, Cullinan P, Tong J, Tang Q, Tesciuba AG, Cannon JL et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 2001; 15: 739–750.

    Article  CAS  PubMed  Google Scholar 

  104. Roumier A, Olivo-Marin JC, Arpin M, Michel F, Martin M, Mangeat P et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 2001; 15: 715–728.

    Article  CAS  PubMed  Google Scholar 

  105. Lasserre R, Charrin S, Cuche C, Danckaert A, Thoulouze MI, de Chaumont F et al. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO J 2010; 29: 2301–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR et al. Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol 2007; 179: 5159–5168.

    Article  CAS  PubMed  Google Scholar 

  107. Stokka AJ, Mosenden R, Ruppelt A, Lygren B, Tasken K . The adaptor protein EBP50 is important for localization of the protein kinase A–Ezrin complex in T-cells and the immunomodulating effect of cAMP. Biochem J 2010; 425: 381–388.

    Article  CAS  Google Scholar 

  108. Li Y, Hu J, Vita R, Sun B, Tabata H, Altman A . SPAK kinase is a substrate and target of PKCtheta in T-cell receptor-induced AP-1 activation pathway. EMBO J 2004; 23: 1112–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Polek TC, Talpaz M, Spivak-Kroizman T . The TNF receptor, RELT, binds SPAK and uses it to mediate p38 and JNK activation. Biochem Biophys Res Commun 2006; 343: 125–134.

    Article  CAS  PubMed  Google Scholar 

  110. Cusick JK, Xu LG, Bin LH, Han KJ, Shu HB . Identification of RELT homologues that associate with RELT and are phosphorylated by OSR1. Biochem Biophys Res Commun 2006; 340: 535–543.

    Article  CAS  PubMed  Google Scholar 

  111. Polek TC, Talpaz M, Spivak-Kroizman TR . TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis. Biochem Biophys Res Commun 2006; 349: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  112. Mercier-Zuber A, O'Shaughnessy KM . Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Curr Opin Nephrol Hypertens 2011; 20: 534–540.

    Article  CAS  PubMed  Google Scholar 

  113. Richardson C, Rafiqi FH, Karlsson HK, Moleleki N, Vandewalle A, Campbell DG et al. Activation of the thiazide-sensitive Na+–Cl− cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 2008; 121: 675–684.

    Article  CAS  PubMed  Google Scholar 

  114. Richardson C, Alessi DR . The regulation of salt transport and blood pressure by the WNK–SPAK/OSR1 signalling pathway. J Cell Sci 2008; 121: 3293–3304.

    Article  CAS  PubMed  Google Scholar 

  115. Delpire E, Gagnon KB . SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 2008; 409: 321–331.

    Article  CAS  PubMed  Google Scholar 

  116. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 2005; 280: 42685–42693.

    Article  CAS  PubMed  Google Scholar 

  117. Lee SJ, Cobb MH, Goldsmith EJ . Crystal structure of domain-swapped STE20 OSR1 kinase domain. Protein Sci 2009; 18: 304–313.

    Article  CAS  PubMed  Google Scholar 

  118. Villa F, Deak M, Alessi DR, van Aalten DM . Structure of the OSR1 kinase, a hypertension drug target. Proteins 2008; 73: 1082–1087.

    Article  CAS  PubMed  Google Scholar 

  119. Villa F, Goebel J, Rafiqi FH, Deak M, Thastrup J, Alessi DR et al. Structural insights into the recognition of substrates and activators by the OSR1 kinase. EMBO Rep 2007; 8: 839–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lim J, Lennard A, Sheppard PW, Kellie S . Identification of residues which regulate activity of the STE20-related kinase hMINK. Biochem Biophys Res Commun 2003; 300: 694–698.

    Article  CAS  PubMed  Google Scholar 

  121. Tesz GJ, Guilherme A, Guntur KV, Hubbard AC, Tang X, Chawla A et al. Tumor necrosis factor alpha (TNFalpha) stimulates Map4k4 expression through TNFalpha receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem 2007; 282: 19302–19312.

    Article  CAS  PubMed  Google Scholar 

  122. Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458: 1180–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kuramochi S, Moriguchi T, Kuida K, Endo J, Semba K, Nishida E et al. LOK is a novel mouse STE20-like protein kinase that is expressed predominantly in lymphocytes. J Biol Chem 1997; 272: 22679–22684.

    Article  CAS  PubMed  Google Scholar 

  124. Endo J, Toyama-Sorimachi N, Taya C, Kuramochi-Miyagawa S, Nagata K, Kuida K et al. Deficiency of a STE20/PAK family kinase LOK leads to the acceleration of LFA-1 clustering and cell adhesion of activated lymphocytes. FEBS Lett 2000; 468: 234–238.

    Article  CAS  PubMed  Google Scholar 

  125. Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M et al. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS ONE 2008; 3: e1868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Roovers K, Wagner S, Storbeck CJ, O'Reilly P, Lo V, Northey JJ et al. The Ste20-like kinase SLK is required for ErbB2-driven breast cancer cell motility. Oncogene 2009; 28: 2839–2848.

    Article  CAS  PubMed  Google Scholar 

  127. Storbeck CJ, Wagner S, O'Reilly P, McKay M, Parks RJ, Westphal H et al. The Ldb1 and Ldb2 transcriptional cofactors interact with the Ste20-like kinase SLK and regulate cell migration. Mol Biol Cell 2009; 20: 4174–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen Z, Cobb MH . Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. J Biol Chem 2001; 276: 16070–16075.

    Article  CAS  PubMed  Google Scholar 

  129. Huangfu WC, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J . Osmotic stress activates the TAK1–JNK pathway while blocking TAK1-mediated NF-kappaB activation: TAO2 regulates TAK1 pathways. J Biol Chem 2006; 281: 28802–28810.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Program of the Ministry of Science and Technology of China (2010CB529700 and 2012CB910204), the National Natural Science Foundation of China (NSFC10979005 and NSFC30970566) and the Science and Technology Commission of Shanghai Municipality (11JC14140000). Dr ZZ is a scholar of the Hundred Talents Program of the Chinese Academy of Sciences. Dr Greene is supported by grants from the NIH, NCI, the Abramson Family Research Institute and the BCRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaocai Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Shi, Z., Jiao, S. et al. Germinal center kinases in immune regulation. Cell Mol Immunol 9, 439–445 (2012). https://doi.org/10.1038/cmi.2012.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.30

Keywords

This article is cited by

Search

Quick links