Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy

Abstract

Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kiessling R, Klein E, Pross H, Wigzell H . ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975; 5: 117–121.

    Article  CAS  PubMed  Google Scholar 

  2. Kiessling R, Klein E, Wigzell H . ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5: 112–117.

    Article  CAS  PubMed  Google Scholar 

  3. Herberman RB, Nunn ME, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16: 216–229.

    Article  CAS  PubMed  Google Scholar 

  4. Herberman RB, Nunn ME, Holden HT, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975; 16: 230–239.

    Article  CAS  PubMed  Google Scholar 

  5. Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V . Natural killer cells: definition of a cell type rather than a function. J Immunol 1986; 137: 2735–2739.

    CAS  PubMed  Google Scholar 

  6. Lanier LL, Testi R, Bindl J, Phillips JH . Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 1989; 169: 2233–2238.

    Article  CAS  PubMed  Google Scholar 

  7. Ritz J, Schmidt RE, Michon J, Hercend T, Schlossman SF . Characterization of functional surface structures on human natural killer cells. Adv Immunol 1988; 42: 181–211.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  PubMed  Google Scholar 

  9. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 2001; 97: 3146–3151.

    Article  CAS  PubMed  Google Scholar 

  10. Karre K, Ljunggren HG, Piontek G, Kiessling R . Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319: 675–678.

    Article  CAS  PubMed  Google Scholar 

  11. Karre K . NK cells, MHC class I molecules and the missing self. Scand J Immunol 2002; 55: 221–228.

    Article  CAS  PubMed  Google Scholar 

  12. Di Santo JP . Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 2006; 24: 257–286.

    Article  CAS  PubMed  Google Scholar 

  13. Colonna M, Brooks EG, Falco M, Ferrara GB, Strominger JL . Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 1993; 260: 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  14. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  15. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  16. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333–339.

    CAS  PubMed  Google Scholar 

  17. Takenaka K, Mizuno SI, Harada M, Nagafuji K, Miyamoto T, Iwasaki H et al. Generation of human natural killer cells from peripheral blood CD34+ cells mobilized by granulocyte colony-stimulating factor. Br J Haematol 1996; 92: 788–794.

    Article  CAS  PubMed  Google Scholar 

  18. Sconocchia G, Provenzano M, Rezvani K, Li J, Melenhorst J, Hensel N et al. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines. J Transl Med 2005; 3: 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kao IT, Yao CL, Kong ZL, Wu ML, Chuang TL, Hwang SM . Generation of natural killer cells from serum-free, expanded human umbilical cord blood CD34+ cells. Stem Cells Dev 2007; 16: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  20. Suck G, Koh MB . Emerging natural killer cell immunotherapies: large-scale ex vivo production of highly potent anticancer effectors. Hematol Oncol Stem Cell Ther 2010; 3: 135–142.

    Article  CAS  PubMed  Google Scholar 

  21. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  22. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357.

    Article  CAS  PubMed  Google Scholar 

  25. Khong HT, Restifo NP . Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nature immunology 2002; 3: 999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18: 89–95.

    Article  CAS  PubMed  Google Scholar 

  27. Smyth MJ, Hayakawa Y, Takeda K, Yagita H . New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850–861.

    Article  CAS  PubMed  Google Scholar 

  28. Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS . Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and something new. Blood 2011; 117: 3268–3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romagne F, Andre P, Spee P, Zahn S, Anfossi N, Gauthier L et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114: 2667–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benson DM Jr, Bakan CE, Zhang S, Collins SM, Liang J, Srivastava S et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 2011; 118: 6387–6391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robinson BW, Morstyn G . Natural killer (NK)-resistant human lung cancer cells are lysed by recombinant interleukin-2-activated NK cells. Cell Immunol 1987; 106: 215–222.

    Article  CAS  PubMed  Google Scholar 

  32. Torelli GF, Guarini A, Palmieri G, Breccia M, Vitale A, Santoni A et al. Expansion of cytotoxic effectors with lytic activity against autologous blasts from acute myeloid leukaemia patients in complete haematological remission. Br J Haematol 2002; 116: 299–307.

    Article  CAS  PubMed  Google Scholar 

  33. Becknell B, Caligiuri MA . Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005; 86: 209–239.

    Article  CAS  PubMed  Google Scholar 

  34. Cao S, Wang YL, Ren XB, Yu JP, Ren BZ, Zhang XW et al. Efficacy of large doses of IL-2-activated human leukocyte antigen haploidentical peripheral blood stem cells on refractory metastatic renal cell carcinoma. Cancer Biother Radiopharm 2011; 26: 503–510.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenstein M, Ettinghausen SE, Rosenberg SA . Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol 1986; 137: 1735–1742.

    CAS  PubMed  Google Scholar 

  36. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17: 2105–2116.

    Article  CAS  PubMed  Google Scholar 

  37. Jakobisiak M, Golab J, Lasek W . Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev 2011; 22: 99–108.

    Article  CAS  PubMed  Google Scholar 

  38. Foley B, Cooley S, Verneris MR, Curtsinger J, Luo X, Waller EK et al. NK-cell education after allogeneic transplantation: dissociation between recovery of cytokine producing and cytotoxic functions. Blood 2011; 118: 2784–2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

  40. Ren XB, Yu JP, Cao S, Ren BZ, Li H, Liu H et al. Antitumor effect of large doses IL-2-activated HLA haploidentical peripheral blood stem cells on refractory metastatic solid tumor treatment. Cancer Biother Radiopharm 2007; 22: 223–234.

    Article  CAS  PubMed  Google Scholar 

  41. Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP, Tonn T et al. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 2004; 33: 261–266.

    Article  CAS  PubMed  Google Scholar 

  42. Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK . Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 2008; 181: 3449–3455.

    Article  CAS  PubMed  Google Scholar 

  43. Imai C, Iwamoto S, Campana D . Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106: 376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91: 3850–3861.

    CAS  PubMed  Google Scholar 

  45. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 2008; 10: 625–632.

    Article  CAS  PubMed  Google Scholar 

  46. Arina A, Murillo O, Dubrot J, Azpilikueta A, Gabari I, Perez-Gracia JL et al. Interleukin-15 liver gene transfer increases the number and function of IKDCs and NK cells. Gene Ther 2008; 15: 473–483.

    Article  CAS  PubMed  Google Scholar 

  47. Grzywacz B, Kataria N, Sikora M, Oostendorp RA, Dzierzak EA, Blazar BR et al. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 2006; 108: 3824–3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller JS, Alley KA, McGlave P . Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+ NK progenitor. Blood 1994; 83: 2594–2601.

    CAS  PubMed  Google Scholar 

  49. Freud AG, Caligiuri MA . Human natural killer cell development. Immunol Rev 2006; 214: 56–72.

    Article  CAS  PubMed  Google Scholar 

  50. Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci USA 108: 2402–2407.

  51. Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, Pasqualetto V, Enault L, Richard-Le Goff O et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 2006; 7: 1217–1224.

    Article  CAS  PubMed  Google Scholar 

  52. Colucci F, Caligiuri MA, Di Santo JP . What does it take to make a natural killer? Nat Rev Immunol 2003; 3: 413–425.

    Article  CAS  PubMed  Google Scholar 

  53. Ramos SB, Garcia AB, Viana SR, Voltarelli JC, Falcao RP . Phenotypic and functional evaluation of natural killer cells in thymectomized children. Clin Immunol Immunopathol 1996; 81: 277–281.

    Article  CAS  PubMed  Google Scholar 

  54. Passlick B, Izbicki JR, Waydhas C, Nast-Kolb D, Schweiberer L, Ziegler-Heitbrock HW . Posttraumatic splenectomy does not influence human peripheral blood mononuclear cell subsets. J Clin Lab Immunol 1991; 34: 157–161.

    CAS  PubMed  Google Scholar 

  55. Haller O, Wigzell H . Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent. J Immunol 1977; 118: 1503–1506.

    CAS  PubMed  Google Scholar 

  56. Grzywacz B, Kataria N, Blazar BR, Miller JS, Verneris MR . Natural killer cell differentiation by myeloid progenitors. Blood 2011; 117: 3548–3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Graf T . Differentiation plasticity of hematopoietic cells. Blood 2002; 99: 3089–3101.

    Article  CAS  PubMed  Google Scholar 

  58. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y . Commitment of common T/natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 1999; 190: 1617–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 2009; 206: 2977–2986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 2009; 10: 1118–1124.

    Article  CAS  PubMed  Google Scholar 

  62. Yu H, Fehniger TA, Fuchshuber P, Thiel KS, Vivier E, Carson WE et al. Flt3 ligand promotes the generation of a distinct CD34+ human natural killer cell progenitor that responds to interleukin-15. Blood 1998; 92: 3647–3657.

    CAS  PubMed  Google Scholar 

  63. Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 2002; 99: 4526–4531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bennett IM, Zatsepina O, Zamai L, Azzoni L, Mikheeva T, Perussia B . Definition of a natural killer NKR-P1A+/CD56−/CD16− functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med 1996; 184: 1845–1856.

    Article  CAS  PubMed  Google Scholar 

  65. Lanier LL, Chang C, Phillips JH . Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 1994; 153: 2417–2428.

    CAS  PubMed  Google Scholar 

  66. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006; 25: 331–342.

    Article  CAS  PubMed  Google Scholar 

  67. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005; 436: 709–713.

    Article  CAS  PubMed  Google Scholar 

  68. Sutlu T, Stellan B, Gilljam M, Quezada HC, Nahi H, Gahrton G et al. Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 2010; 12: 1044–1055.

    Article  CAS  PubMed  Google Scholar 

  69. Alici E, Sutlu T, Bjorkstrand B, Gilljam M, Stellan B, Nahi H et al. Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 2008; 111: 3155–3162.

    Article  CAS  PubMed  Google Scholar 

  70. Doskali M, Tanaka Y, Ohira M, Ishiyama K, Tashiro H, Chayama K et al. Possibility of adoptive immunotherapy with peripheral blood-derived CD3CD56+ and CD3+CD56+ cells for inducing antihepatocellular carcinoma and antihepatitis C virus activity. J Immunother 2011; 34: 129–138.

    Article  CAS  PubMed  Google Scholar 

  71. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009; 69: 4010–4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  73. Voshol H, Dullens HF, Den Otter W, Vliegenthart JF . Human natural killer cells: a convenient purification procedure and the influence of cryopreservation on cytotoxic activity. J Immunol Methods 1993; 165: 21–30.

    Article  CAS  PubMed  Google Scholar 

  74. Fujiwara S, Akiyama M, Yamakido M, Seyama T, Kobuke K, Hakoda M et al. Cryopreservation of human lymphocytes for assessment of lymphocyte subsets and natural killer cytotoxicity. J Immunol Methods 1986; 90: 265–273.

    Article  CAS  PubMed  Google Scholar 

  75. Mrozek E, Anderson P, Caligiuri MA . Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2632–2640.

    CAS  PubMed  Google Scholar 

  76. Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 2009; 113: 6094–6101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  78. Allegrucci C, Young LE . Differences between human embryonic stem cell lines. Hum Reprod Update 2007; 13: 103–120.

    Article  CAS  PubMed  Google Scholar 

  79. Woll PS, Martin CH, Miller JS, Kaufman DS . Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 2005; 175: 5095–5103.

    Article  CAS  PubMed  Google Scholar 

  80. Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H . Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1995; 85: 3538–3546.

    CAS  PubMed  Google Scholar 

  81. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunol 2002; 3: 687–694.

    Article  CAS  Google Scholar 

  82. Giuliani M, Giron-Michel J, Negrini S, Vacca P, Durali D, Caignard A et al. Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15. PLoS One 2008; 3: e2241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kalberer CP, Siegler U, Wodnar-Filipowicz A . Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells. Blood 2003; 102: 127–135.

    Article  CAS  PubMed  Google Scholar 

  84. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T et al. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol 1989; 17: 145–153.

    CAS  PubMed  Google Scholar 

  85. Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 2002; 99: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  86. Moore KA, Ema H, Lemischka IR . In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997; 89: 4337–4347.

    CAS  PubMed  Google Scholar 

  87. Miller JS, McCullar V . Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood 2001; 98: 705–713.

    Article  CAS  PubMed  Google Scholar 

  88. McCullar V, Oostendorp R, Panoskaltsis-Mortari A, Yun G, Lutz CT, Wagner JE et al. Mouse fetal and embryonic liver cells differentiate human umbilical cord blood progenitors into CD56-negative natural killer cell precursors in the absence of interleukin-15. Exp Hematol 2008; 36: 598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pierson BA, McGlave PB, Hu WS, Miller JS . Natural killer cell proliferation is dependent on human serum and markedly increased utilizing an enriched supplemented basal medium. J Hematother 1995; 4: 149–158.

    Article  CAS  PubMed  Google Scholar 

  90. Pierson BA, Gupta K, Hu WS, Miller JS . Human natural killer cell expansion is regulated by thrombospondin-mediated activation of transforming growth factor-beta 1 and independent accessory cell-derived contact and soluble factors. Blood 1996; 87: 180–189.

    CAS  PubMed  Google Scholar 

  91. Kao IT, Yao CL, Kong ZL, Wu ML, Chuang TL, Hwang SM . Generation of natural killer cells from serum-free, expanded human umbilical cord blood CD34+ cells. Stem Cells Dev 2007; 16: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  92. Bonanno G, Mariotti A, Procoli A, Corallo M, Scambia G, Pierelli L et al. Interleukin-21 induces the differentiation of human umbilical cord blood CD34−lineage− cells into pseudomature lytic NK cells. BMC Immunol 2009; 10: 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Frias AM, Porada CD, Crapnell KB, Cabral JM, Zanjani ED, Almeida-Porada G . Generation of functional natural killer and dendritic cells in a human stromal-based serum-free culture system designed for cord blood expansion. Exp Hematol 2008; 36: 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams NS, Klem J, Puzanov IJ, Sivakumar PV, Schatzle JD, Bennett M et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems. Immunol Rev 1998; 165: 47–61.

    Article  CAS  PubMed  Google Scholar 

  95. Williams NS, Moore TA, Schatzle JD, Puzanov IJ, Sivakumar PV, Zlotnik A et al. Generation of lytic natural killer 1.1+, Ly−49− cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J Exp Med 1997; 186: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Williams DE, Eisenman J, Baird A, Rauch C, van Ness K, March CJ et al. Identification of a ligand for the c-kit proto-oncogene. Cell 1990; 63: 167–174.

    Article  CAS  PubMed  Google Scholar 

  97. Matos ME, Schnier GS, Beecher MS, Ashman LK, William DE, Caligiuri MA . Expression of a functional c-kit receptor on a subset of natural killer cells. J Exper Med 1993; 178: 1079–1084.

    Article  CAS  Google Scholar 

  98. Colucci F, Di Santo JP . The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells. Blood 2000; 95: 984–991.

    CAS  PubMed  Google Scholar 

  99. Puel A, Ziegler SF, Buckley RH, Leonard WJ . Defective IL7R expression in T−B+NK+ severe combined immunodeficiency. Nat Genet 1998; 20: 394–397.

    Article  CAS  PubMed  Google Scholar 

  100. Mingari MC, Vitale C, Cantoni C, Bellomo R, Ponte M, Schiavetti F et al. Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. Eur J Immunol 1997; 27: 1374–1380.

    Article  CAS  PubMed  Google Scholar 

  101. Freud AG, Becknell B, Roychowdhury S, Mao HC, Ferketich AK, Nuovo GJ et al. A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 2005; 22: 295–304.

    Article  CAS  PubMed  Google Scholar 

  102. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009; 457: 722–725.

    Article  CAS  PubMed  Google Scholar 

  103. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100: 3633–3638.

    Article  CAS  PubMed  Google Scholar 

  104. Gamero AM, Ussery D, Reintgen DS, Puleo CA, Djeu JY . Interleukin 15 induction of lymphokine-activated killer cell function against autologous tumor cells in melanoma patient lymphocytes by a CD18-dependent, perforin-related mechanism. Cancer Res 1995; 55: 4988–4994.

    CAS  PubMed  Google Scholar 

  105. Mortier E, Woo T, Advincula R, Gozalo S, Ma A . IL-15Ralpha chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 2008; 205: 1213–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee GA, Liou YH, Wang SW, Ko KL, Jiang ST, Liao NS . Different NK cell developmental events require different levels of IL-15 trans-presentation. J Immunol 2011; 187: 1212–1221.

    Article  CAS  PubMed  Google Scholar 

  107. Dulphy N, Haas P, Busson M, Belhadj S, Peffault de Latour R, Robin M et al. An unusual CD56brightCD16low NK cell subset dominates the early posttransplant period following HLA-matched hematopoietic stem cell transplantation. J Immunol 2008; 181: 2227–2237.

    Article  CAS  PubMed  Google Scholar 

  108. Beziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadiere B et al. CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. J Immunol 2011; 186: 6753–6761.

    Article  CAS  PubMed  Google Scholar 

  109. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116: 3853–3864.

    Article  PubMed  CAS  Google Scholar 

  110. Berg M, Childs R . Ex-vivo expansion of NK cells: what is the priority—high yield or high purity? Cytotherapy 2010; 12: 969–970.

    Article  PubMed  Google Scholar 

  111. Alici E, Konstantinidis KV, Sutlu T, Aints A, Gahrton G, Ljunggren HG et al. Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model. Exp Hematol 2007; 35: 1839–1846.

    Article  CAS  PubMed  Google Scholar 

  112. Sutlu T, Alici E . Ex vivo expansion of natural killer cells: a question of function. Cytotherapy 2011; 13: 767–768.

    Article  PubMed  Google Scholar 

  113. Moins-Teisserenc HT, Gadola SD, Cella M, Dunbar PR, Exley A, Blake N et al. Association of a syndrome resembling Wegener's granulomatosis with low surface expression of HLA class-I molecules. Lancet 1999; 354: 1598–1603.

    Article  CAS  PubMed  Google Scholar 

  114. Schleinitz N, Vely F, Harle JR, Vivier E . Natural killer cells in human autoimmune diseases. Immunology 2010; 131: 451–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010; 28: 955–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Barkholt L, Alici E, Conrad R, Sutlu T, Gilljam M, Stellan B et al. Safety analysis of ex vivo-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy 2009; 1: 753–764.

    Article  CAS  PubMed  Google Scholar 

  117. Siegler U, Meyer-Monard S, Jorger S, Stern M, Tichelli A, Gratwohl A et al. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 2010; 12: 750–763.

    Article  CAS  PubMed  Google Scholar 

  118. Tanaka J, Sugita J, Shiratori S, Shigematu A, Asanuma S, Fujimoto K et al. Expansion of NK cells from cord blood with antileukemic activity using GMP-compliant substances without feeder cells. Leukemia; in press

  119. Spanholtz J, Tordoir M, Eissens D, Preijers F, van der Meer A, Joosten I et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One 2010; 5: e9221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, de Witte T et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 2011; 6: e20740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Escudier B, Farace F, Angevin E, Charpentier F, Nitenberg G, Triebel F et al. Immunotherapy with interleukin-2 (IL2) and lymphokine-activated natural killer cells: improvement of clinical responses in metastatic renal cell carcinoma patients previously treated with IL2. Eur J Cancer 1994; 30A: 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  122. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24: 1861–1871.

    PubMed  Google Scholar 

  123. deMagalhaes-Silverman M, Donnenberg A, Lembersky B, Elder E, Lister J, Rybka W et al. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 2000; 23: 154–160.

    Article  CAS  PubMed  Google Scholar 

  124. Lister J, Rybka WB, Donnenberg AD, deMagalhaes-Silverman M, Pincus SM, Bloom EJ et al. Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate posttransplant period. Clin Cancer Res 1995; 1: 607–614.

    CAS  PubMed  Google Scholar 

  125. Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP, Tonn T et al. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Molec Dis 2004; 33: 261–266.

    Article  CAS  PubMed  Google Scholar 

  126. Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide AL et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004; 104: 3918–3926.

    Article  CAS  PubMed  Google Scholar 

  127. Perez SA, Mahaira LG, Sotiropoulou PA, Gritzapis AD, Iliopoulou EG, Niarchos DK et al. Effect of IL-21 on NK cells derived from different umbilical cord blood populations. Int Immunol 2006; 18: 49–58.

    Article  CAS  PubMed  Google Scholar 

  128. Kobari L, Pflumio F, Giarratana M, Li X, Titeux M, Izac B et al. In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34+ cord blood cells. Exp Hematol 2000; 28: 1470–1480.

    Article  CAS  PubMed  Google Scholar 

  129. Beck RC, Padival M, Yeh D, Ralston J, Cooke KR, Lowe JB . The Notch ligands Jagged2, Delta1, and Delta4 induce differentiation and expansion of functional human NK cells from CD34+ cord blood hematopoietic progenitor cells. Biol Blood Marrow Transplant 2009; 15: 1026–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci US A 2011; 108: 2402–2407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Sergio Querol and Professor Salim Khakoo for their precious advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Madrigal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luevano, M., Madrigal, A. & Saudemont, A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 9, 310–320 (2012). https://doi.org/10.1038/cmi.2012.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.17

Keywords

This article is cited by

Search

Quick links