Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New insights of T cells in the pathogenesis of psoriasis

Abstract

Psoriasis is one of the most common immune-mediated chronic, inflammatory skin diseases characterized by hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages and neutrophils. Although the pathogenesis of psoriasis is not fully understood, there is ample evidence suggesting that the dysregulation of immune cells in the skin, particularly T cells, plays a critical role in psoriasis development. In this review, we mainly focus on the pathogenic T cells and discuss how these T cells are activated and involved in the disease pathogenesis. Newly identified ‘professional’ IL-17-producing dermal γδ T cells and their potential role in psoriasis will also be included. Finally, we will briefly summarize the recent progress on the T cell and its related cytokine-targeted therapy for psoriasis treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Nestle FO, Kaplan DH, Barker J . Psoriasis. N Engl J Med 2009; 361: 496–509.

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths CE, Barker JN . Pathogenesis and clinical features of psoriasis. Lancet 2007; 370: 263–271.

    Article  CAS  PubMed  Google Scholar 

  3. Voorhees JJ . Pathophysiology of psoriasis. Annu Rev Med 1977; 28: 467–473.

    Article  CAS  PubMed  Google Scholar 

  4. Mueller W, Herrmann B . Cyclosporin A for psoriasis. N Engl J Med 1979; 301: 555.

    CAS  PubMed  Google Scholar 

  5. Nicolas JF, Chamchick N, Thivolet J, Wijdenes J, Morel P, Revillard JP . CD4 antibody treatment of severe psoriasis. Lancet 1991; 338: 321.

    Article  CAS  PubMed  Google Scholar 

  6. Prinz J, Braun-Falco O, Meurer M, Daddona P, Reiter C, Rieber P et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet 1991; 338: 320–321.

    Article  CAS  PubMed  Google Scholar 

  7. Abrams JR, Kelley SL, Hayes E, Kikuchi T, Brown MJ, Kang S et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 2000; 192: 681–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bata-Csorgo Z, Hammerberg C, Voorhees JJ, Cooper KD . Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes. J Clin Invest 1995; 95: 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wrone-Smith T, Nickoloff BJ . Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996; 98: 1878–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nickoloff BJ, Wrone-Smith T . Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999; 155: 145–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Telfer NR, Chalmers RJ, Whale K, Colman G . The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol 1992; 128: 39–42.

    Article  CAS  PubMed  Google Scholar 

  12. Gudjonsson JE, Thorarinsson AM, Sigurgeirsson B, Kristinsson KG, Valdimarsson H . Streptococcal throat infections and exacerbation of chronic plaque psoriasis: a prospective study. Br J Dermatol 2003; 149: 530–534.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis HM, Baker BS, Bokth S, Powles AV, Garioch JJ, Valdimarsson H et al. Restricted T-cell receptor V beta gene usage in the skin of patients with guttate and chronic plaque psoriasis. Br J Dermatol 1993; 129: 514–520.

    Article  CAS  PubMed  Google Scholar 

  14. Leung DY, Travers JB, Giorno R, Norris DA, Skinner R, Aelion J et al. Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. J Clin Invest 1995; 96: 2106–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leung DY, Gately M, Trumble A, Ferguson-Darnell B, Schlievert PM, Picker LJ . Bacterial superantigens induce T cell expression of the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen, via stimulation of interleukin 12 production. J Exp Med 1995; 181: 747–753.

    Article  CAS  PubMed  Google Scholar 

  16. Menssen A, Trommler P, Vollmer S, Schendel D, Albert E, Gürtler L et al. Evidence for an antigen-specific cellular immune response in skin lesions of patients with psoriasis vulgaris. J Immunol 1995; 155: 4078–4083.

    CAS  PubMed  Google Scholar 

  17. Chang JC, Smith LR, Froning KJ, Schwabe BJ, Laxer JA, Caralli LL et al. CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proc Natl Acad Sci USA 1994; 91: 9282–9286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prinz JC, Vollmer S, Boehncke WH, Menssen A, Laisney I, Trommler P . Selection of conserved TCR VDJ rearrangements in chronic psoriatic plaques indicates a common antigen in psoriasis vulgaris. Eur J Immunol 1999; 29: 3360–3368.

    Article  CAS  PubMed  Google Scholar 

  19. Vollmer S, Menssen A, Prinz JC . Dominant lesional T cell receptor rearrangements persist in relapsing psoriasis but are absent from nonlesional skin: evidence for a stable antigen-specific pathogenic T cell response in psoriasis vulgaris. J Invest Dermatol 2001; 117: 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  20. Prinz JC . Disease mimicry—a pathogenetic concept for T cell-mediated autoimmune disorders triggered by molecular mimicry? Autoimmun Rev 2004; 3: 10–15.

    Article  PubMed  Google Scholar 

  21. Prinz JC . Psoriasis vulgaris—a sterile antibacterial skin reaction mediated by cross-reactive T cells? An immunological view of the pathophysiology of psoriasis. Clin Exp Dermatol 2001; 26: 326–332.

    Article  CAS  PubMed  Google Scholar 

  22. Sigmundsdottir H, Sigurgeirsson B, Troye-Blomberg M, Good MF, Valdimarsson H, Jonsdottir I . Circulating T cells of patients with active psoriasis respond to streptococcal M-peptides sharing sequences with human epidermal keratins. Scand J Immunol 1997; 45: 688–697.

    Article  CAS  PubMed  Google Scholar 

  23. Gudmundsdottir AS, Sigmundsdottir H, Sigurgeirsson B, Good MF, Valdimarsson H, Jonsdottir I . Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis? Clin Exp Immunol 1999; 117: 580–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnston A, Gudjonsson JE, Sigmundsdottir H, Love TJ, Valdimarsson H . Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8+ T cells. Clin Exp Immunol 2004; 138: 83–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Besgen P, Trommler P, Vollmer S, Prinz JC . Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis. J Immunol 2010; 184: 5392–5402.

    Article  CAS  PubMed  Google Scholar 

  26. Brown DW, Baker BS, Ovigne JM, Fischetti VA, Hardman C, Powles AV et al. Non-M protein(s) on the cell wall and membrane of group A streptococci induce(s) IFN-gamma production by dermal CD4+ T cells in psoriasis. Arch Dermatol Res 2001; 293: 165–170.

    Article  CAS  PubMed  Google Scholar 

  27. Baker BS, Ovigne JM, Fischetti VA, Powles A, Fry L . Selective response of dermal Th-1 cells to 20–50 kDa streptococcal cell-wall proteins in chronic plaque psoriasis. Scand J Immunol 2003; 58: 335–341.

    Article  CAS  PubMed  Google Scholar 

  28. Baker BS, Brown DW, Fischetti VA, Ovigne JM, Porter W, Powles A et al. Skin T cell proliferative response to M protein and other cell wall and membrane proteins of group A streptococci in chronic plaque psoriasis. Clin Exp Immunol 2001; 124: 516–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker BS, Laman JD, Powles A, van der Fits L, Voerman JS, Melief MJ et al. Peptidoglycan and peptidoglycan-specific Th1 cells in psoriatic skin lesions. J Pathol 2006; 209: 174–181.

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZM, Liu C, Dziarski R . Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J Biol Chem 2000; 275: 20260–20267.

    Article  CAS  PubMed  Google Scholar 

  31. Dziarski R . Peptidoglycan recognition proteins (PGRPs). Mol Immunol 2004; 40: 877–886.

    Article  CAS  PubMed  Google Scholar 

  32. Valdimarsson H . The genetic basis of psoriasis. Clin Dermatol 2007; 25: 563–567.

    Article  PubMed  Google Scholar 

  33. Baker BS, Powles A, Fry L . Peptidoglycan: a major aetiological factor for psoriasis? Trends Immunol 2006; 27: 545–551.

    Article  CAS  PubMed  Google Scholar 

  34. Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, de Fougerolles A et al. Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 2007; 13: 836–842.

    Article  CAS  PubMed  Google Scholar 

  35. Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A . Psoriasis—as an autoimmune disease caused by molecular mimicry. Trends Immunol 2009; 30: 494–501.

    Article  CAS  PubMed  Google Scholar 

  36. Cai YH, Lu ZY, Shi RF, Xue F, Chen XY, Pan M et al. Enhanced proliferation and activation of peripheral blood mononuclear cells in patients with psoriasis vulgaris mediated by streptococcal antigen with bacterial DNA. J Invest Dermatol 2009; 129: 2653–2660.

    Article  CAS  PubMed  Google Scholar 

  37. Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol 1994; 102: 145–149.

    Article  CAS  PubMed  Google Scholar 

  38. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG . The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol 1999; 113: 752–759.

    Article  CAS  PubMed  Google Scholar 

  39. Friedrich M, Krammig S, Henze M, Docke WD, Sterry W, Asadullah K . Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory/effector type 1 immunophenotype. Arch Dermatol Res 2000; 292: 519–521.

    Article  CAS  PubMed  Google Scholar 

  40. Lew W, Bowcock AM, Krueger JG . Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and “Type 1” inflammatory gene expression. Trends Immunol 2004; 25: 295–305.

    Article  CAS  PubMed  Google Scholar 

  41. Weaver CT, Hatton RD, Mangan PR, Harrington LE . IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007; 25: 821–852.

    Article  CAS  PubMed  Google Scholar 

  42. Steinman L . A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13: 139–145.

    Article  CAS  PubMed  Google Scholar 

  43. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517.

    Article  CAS  PubMed  Google Scholar 

  44. Kastelein RA, Hunter CA, Cua DJ . Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25: 221–242.

    Article  CAS  PubMed  Google Scholar 

  45. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol 2008; 9: 650–657.

    Article  CAS  PubMed  Google Scholar 

  46. Boniface K, Blom B, Liu YJ, de Waal Malefyt R . From interleukin-23 to T-helper 17 cells: human T-helper cell differentiation revisited. Immunol Rev 2008; 226: 132–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009; 10: 314–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715–725.

    Article  CAS  PubMed  Google Scholar 

  49. Boniface K, Guignouard E, Pedretti N, Garcia M, Delwail A, Bernard FX et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol 2007; 150: 407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008; 128: 1207–1211.

    Article  CAS  PubMed  Google Scholar 

  51. Caruso R, Botti E, Sarra M, Esposito M, Stolfi C, Diluvio L et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat Med 2009; 15: 1013–1015.

    Article  CAS  PubMed  Google Scholar 

  52. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A . Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol 2010; 130: 1373–1383.

    Article  CAS  PubMed  Google Scholar 

  53. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004; 199: 125–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB . In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 2006; 176: 1908–1915.

    Article  CAS  PubMed  Google Scholar 

  55. Cai Y, Shen X, Ding C, Qi C, Li K, Li X et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 2011; 35: 596–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006; 203: 2577–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445: 648–651.

    Article  CAS  PubMed  Google Scholar 

  58. Hedrick MN, Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F, Singh SP et al. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest 2009; 119: 2317–2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A . IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 2011; 186: 1495–1502.

    Article  CAS  PubMed  Google Scholar 

  60. van Belle AB, de Heusch M, Lemaire MM, Hendrickx E, Warnier G, Renauld JC et al. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 2012; 188: 462–469.

    Article  CAS  PubMed  Google Scholar 

  61. Shi X, Jin L, Dang E, Chang T, Feng Z, Liu Y et al. IL-17A upregulates keratin 17 expression in keratinocytes through STAT1- and STAT3-dependent mechanisms. J Invest Dermatol 2011; 131: 2401–2408.

    Article  CAS  PubMed  Google Scholar 

  62. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950–957.

    Article  CAS  PubMed  Google Scholar 

  64. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suárez-Fariñas M, Cardinale I et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 2008; 159: 1092–1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A, Vatan L et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol 2008; 181: 4733–4741.

    Article  CAS  PubMed  Google Scholar 

  66. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 2009; 129: 79–88.

    Article  CAS  PubMed  Google Scholar 

  67. Johnson-Huang LM, Suarez-Farinas M, Pierson KC, Fuentes-Duculan J, Cueto I, Lentini T et al. A single intradermal injection of IFN-gamma induces an inflammatory state in both non-lesional psoriatic and healthy skin. J Invest Dermatol 2012; 132: 1177–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H . Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat Immunol 2009; 10: 864–871.

    Article  CAS  PubMed  Google Scholar 

  69. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F . Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 2009; 10: 857–863.

    Article  CAS  PubMed  Google Scholar 

  70. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 2009; 119: 3573–3585.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS ONE 2010; 5: e14108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bergstresser PR, Tigelaar RE, Dees JH, Streilein JW . Thy-1 antigen-bearing dendritic cells populate murine epidermis. J Invest Dermatol 1983; 81: 286–288.

    Article  CAS  PubMed  Google Scholar 

  73. Hayday AC . γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 975–1026.

    Article  CAS  PubMed  Google Scholar 

  74. Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP . Limited diversity of gamma delta antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 1988; 55: 837–847.

    Article  CAS  PubMed  Google Scholar 

  75. Jameson J, Havran WL . Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev 2007; 215: 114–122.

    Article  CAS  PubMed  Google Scholar 

  76. Havran WL, Jameson JM . Epidermal T cells and wound healing. J Immunol 2010; 184: 5423–5428.

    Article  CAS  PubMed  Google Scholar 

  77. Gray EE, Suzuki K, Cyster JG . Cutting edge: identification of a motile IL-17-producing gammadelta T cell population in the dermis. J Immunol 2011; 186: 6091–6095.

    Article  CAS  PubMed  Google Scholar 

  78. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL et al. Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J Exp Med 2011; 208: 505–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O'Brien RL, Roark CL, Born WK . IL-17-producing gammadelta T cells. Eur J Immunol 2009; 39: 662–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M . Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009; 31: 321–330.

    Article  CAS  PubMed  Google Scholar 

  81. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH . Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31: 331–341.

    Article  CAS  PubMed  Google Scholar 

  82. Mabuchi T, Takekoshi T, Hwang ST . Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J Immunol 2011; 187: 5026–5031.

    Article  CAS  PubMed  Google Scholar 

  83. Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE, Ali N et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J Immunol 2011; 187: 2783–2793.

    Article  CAS  PubMed  Google Scholar 

  84. Nickoloff BJ, Wrone-Smith T, Bonish B, Porcelli SA . Response of murine and normal human skin to injection of allogeneic blood-derived psoriatic immunocytes: detection of T cells expressing receptors typically present on natural killer cells, including CD94, CD158, and CD161. Arch Dermatol 1999; 135: 546–552.

    CAS  PubMed  Google Scholar 

  85. Nickoloff BJ, Bonish B, Huang BB, Porcelli SA . Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J Dermatol Sci 2000; 24: 212–225.

    Article  CAS  PubMed  Google Scholar 

  86. Ottaviani C, Nasorri F, Bedini C, de Pita O, Girolomoni G, Cavani A . CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 2006; 36: 118–128.

    Article  CAS  PubMed  Google Scholar 

  87. Kastelan M, Prpic Massari L, Gruber F, Zamolo G, Zauhar G, Coklo M et al. Perforin expression is upregulated in the epidermis of psoriatic lesions. Br J Dermatol 2004; 151: 831–836.

    Article  CAS  PubMed  Google Scholar 

  88. Cosmi L, de Palma R, Santarlasci V, Maggi L, Capone M, Frosali F et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008; 205: 1903–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 2011; 187: 490–500.

    Article  CAS  PubMed  Google Scholar 

  90. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010; 464: 1371–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wing K, Sakaguchi S . Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010; 11: 7–13.

    Article  CAS  PubMed  Google Scholar 

  92. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174: 164–173.

    Article  CAS  PubMed  Google Scholar 

  93. Wang H, Peters T, Sindrilaru A, Kess D, Oreshkova T, Yu XZ et al. TGF-beta-dependent suppressive function of Tregs requires wild-type levels of CD18 in a mouse model of psoriasis. J Clin Invest 2008; 118: 2629–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD . IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol 2009; 183: 3170–3176.

    Article  CAS  PubMed  Google Scholar 

  95. Clark RA . Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 2010; 130: 362–370.

    Article  CAS  PubMed  Google Scholar 

  96. Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenenk R, Joosten I, Koenen HJ . Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol 2011; 131: 1853–1860.

    Article  CAS  PubMed  Google Scholar 

  97. Griffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R, Yeilding N et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 2010; 362: 118–128.

    Article  CAS  PubMed  Google Scholar 

  98. Strober BE, Crowley JJ, Yamauchi PS, Olds M, Williams DA . Efficacy and safety results from a phase III, randomized controlled trial comparing the safety and efficacy of briakinumab with etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 2011; 165: 661–668.

    Article  CAS  PubMed  Google Scholar 

  99. Kircik LH, del Rosso JQ . Anti-TNF agents for the treatment of psoriasis. J Drugs Dermatol 2009; 8: 546–559.

    PubMed  Google Scholar 

  100. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2010; 2: 52ra72.

    Article  CAS  PubMed  Google Scholar 

  101. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 2012; 366: 1190–1199.

    Article  CAS  PubMed  Google Scholar 

  102. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 2012; 366: 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  103. Bachmann F, Nast A, Sterry W, Philipp S . Safety and efficacy of the tumor necrosis factor antagonists. Semin Cutan Med Surg 2010; 29: 35–47.

    Article  CAS  PubMed  Google Scholar 

  104. Collamer AN, Battafarano DF . Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: clinical features and possible immunopathogenesis. Semin Arthritis Rheum 2010; 40: 233–240.

    Article  CAS  PubMed  Google Scholar 

  105. Ma HL, Napierata L, Stedman N, Benoit S, Collins M, Nickerson-Nutter C et al. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum 2010; 62: 430–440.

    Article  CAS  PubMed  Google Scholar 

  106. Gordon KB, Langley RG, Gottlieb AB, Papp KA, Krueger GG, Strober BE et al. A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J Invest Dermatol 2012; 132: 304–314.

    Article  CAS  PubMed  Google Scholar 

  107. Waisman A . To be 17 again—anti-interleukin-17 treatment for psoriasis. N Engl J Med 2012; 366: 1251–1252.

    Article  CAS  PubMed  Google Scholar 

  108. Menter A, Griffiths CE . Current and future management of psoriasis. Lancet 2007; 370: 272–284.

    Article  CAS  PubMed  Google Scholar 

  109. Korman BD, Tyler KL, Korman NJ . Progressive multifocal leukoencephalopathy, efalizumab, and immunosuppression: a cautionary tale for dermatologists. Arch Dermatol 2009; 145: 937–942.

    Article  PubMed  Google Scholar 

  110. Bissonnette R, Searles G, Landells I, Shear NH, Papp K, Lui H et al. The AWARE study: methodology and baseline characteristics. J Cutan Med Surg 2009; 13 Suppl 3, S113–S121.

    Article  CAS  PubMed  Google Scholar 

  111. Bissonnette R, Langley RG, Papp K, Matheson R, Toth D, Hultquist M et al. Humanized anti-CD2 monoclonal antibody treatment of plaque psoriasis: efficacy and pharmacodynamic results of two randomized, double-blind, placebo-controlled studies of intravenous and subcutaneous siplizumab. Arch Dermatol Res 2009; 301: 429–442.

    Article  CAS  PubMed  Google Scholar 

  112. Raychaudhuri SP . Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol 2012

  113. Nograles KE, Davidovici B, Krueger JG . New insights in the immunologic basis of psoriasis. Semin Cutan Med Surg 2010; 29: 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007; 178: 2229–2240.

    Article  CAS  PubMed  Google Scholar 

  115. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36: 1309–1323.

    Article  CAS  PubMed  Google Scholar 

  116. Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 2009; 86: 435–443.

    Article  CAS  PubMed  Google Scholar 

  117. Raychaudhuri SP, Raychaudhuri SK, Genovese MC . IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem 2012; 359: 419–429.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH, the National Psoriasis Foundation and the Arthritis National Research Foundation (JY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Fleming, C. & Yan, J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol 9, 302–309 (2012). https://doi.org/10.1038/cmi.2012.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.15

Keywords

This article is cited by

Search

Quick links