Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human allograft rejection in humanized mice: a historical perspective

Abstract

Basic research in transplantation immunology has relied primarily on rodent models. Experimentation with rodents has laid the foundation for our basic understanding of the biological events that precipitate rejection of non-self or allogeneic tissue transplants and supported the development of novel strategies to specifically suppress allogeneic immune responses. However, translation of these studies to the clinic has met with limited success, emphasizing the need for new models that focus on human immune responses to allogeneic tissues. Humanized mouse models are an exciting alternative that permits investigation of the rejection of human tissues mediated by human immune cells without putting patients at risk. However, the use of humanized mice is complicated by a diversity of protocols and approaches, including the large number of immunodeficient mouse strains available, the choice of tissue to transplant and the specific human immune cell populations that can be engrafted. Here, we present a historical perspective on the study of allograft rejection in humanized mice and discuss the use of these novel model systems in transplant biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lechler RI, Sykes M, Thomson AW, Turka LA . Organ transplantation—how much of the promise has been realized? Nat Med 2005; 11: 605–613.

    Article  CAS  PubMed  Google Scholar 

  2. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA . Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 2001; 166: 973–981.

    Article  CAS  PubMed  Google Scholar 

  3. Heeger PS . T-cell allorecognition and transplant rejection: a summary and update. Am J Transplant 2003; 3: 525–533.

    Article  CAS  PubMed  Google Scholar 

  4. Chen G, Dong JH . Individualized immunosuppression: new strategies from pharmacokinetics, pharmacodynamics and pharmacogenomics. Hepatobiliary Pancreat Dis Int 2005; 4: 332–338.

    CAS  PubMed  Google Scholar 

  5. Odorico JS, Sollinger HW . Technical and immunosuppressive advances in transplantation for insulin-dependent diabetes mellitus. World J Surg 2002; 26: 194–211.

    Article  PubMed  Google Scholar 

  6. Shapiro R, Young JB, Milford EL, Trotter JF, Bustami RT, Leichtman AB . Immunosuppression: evolution in practice and trends, 1993–2003. Am J Transplant 2005; 5: 874–886.

    Article  PubMed  Google Scholar 

  7. Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 2010; 120: 1836–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laederach-Hofmann K, Bunzel B . Noncompliance in organ transplant recipients: a literature review. Gen Hosp Psychiatry 2000; 22: 412–424.

    Article  CAS  PubMed  Google Scholar 

  9. Soulillou JP, Giral M . Controlling the incidence of infection and malignancy by modifying immunosuppression. Transplantation 2001; 72: S89–S93.

    Article  CAS  PubMed  Google Scholar 

  10. St Clair EW, Turka LA, Saxon A, Matthews JB, Sayegh MH, Eisenbarth GS et al. New reagents on the horizon for immune tolerance. Annu Rev Med 2007; 58: 329–346.

    Article  CAS  PubMed  Google Scholar 

  11. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    CAS  PubMed  Google Scholar 

  12. Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    Article  CAS  PubMed  Google Scholar 

  13. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 1996; 93: 10285–10290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fulop GM, Phillips RA . The scid mutation in mice causes a general defect in DNA repair. Nature 1990; 347: 479–482.

    Article  CAS  PubMed  Google Scholar 

  15. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  CAS  PubMed  Google Scholar 

  16. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  17. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    Article  CAS  PubMed  Google Scholar 

  18. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68: 855–867.

    Article  CAS  PubMed  Google Scholar 

  19. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE . RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68: 869–877.

    Article  CAS  PubMed  Google Scholar 

  20. Oettinger MA, Schatz DG, Gorka C, Baltimore D . RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248: 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  21. Gellert M . V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 2002; 71: 101–132.

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106: 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    Article  CAS  PubMed  Google Scholar 

  24. Legrand N, Weijer K, Spits H . Experimental models to study development and function of the human immune system in vivo. J Immunol 2006; 176: 2053–2058.

    Article  CAS  PubMed  Google Scholar 

  25. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  PubMed  Google Scholar 

  26. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    Article  CAS  PubMed  Google Scholar 

  27. van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MCH, de Weger RA, Canninga-van Dijk MR et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood 2003; 102: 2522–2531.

    Article  CAS  PubMed  Google Scholar 

  28. Brehm MA, Shultz LD, Greiner DL . Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes 2010; 17: 120–125.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rochman Y, Spolski R, Leonard WJ . New insights into the regulation of T cells by γc family cytokines. Nat Rev Immunol 2009; 9: 480–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brehm MA, Cuthbert A, Yang C, Miller DM, Diiorio P, Laning J et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135: 84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD . High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 1995; 172: 974–982.

    Article  CAS  PubMed  Google Scholar 

  32. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Ablamunits V et al. Comparison of Human Fetal Liver, Umbilical Cord Blood, and Adult Blood Hematopoietic Stem Cell Engraftment in NOD-scid/γc−/−, Balb/c-Rag2−/−γc−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 2009; 70: 790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 2000; 164: 2496–2507.

    Article  CAS  PubMed  Google Scholar 

  34. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  35. Tournoy KG, Depraetere S, Pauwels RA, Leroux-Roels GG . Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice. Clin Exp Immunol 2000; 119: 231–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takenaka K, Prasolava TK, Wang JCY, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  37. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H et al. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 2011; 108: 13224–13229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 2011; 108: 13218–13223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shultz LD, Pearson T, King M, Giassi L, Carney L, Gott B et al. Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research. Ann NY Acad Sci 2007; 1103: 77–89.

    Article  CAS  PubMed  Google Scholar 

  40. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 2008; 126: 303–314.

    Article  CAS  PubMed  Google Scholar 

  41. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157: 104–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banuelos SJ, Shultz LD, Greiner DL, Burzenski LM, Gott B, Lyons BL et al. Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scid and NOD-Rag1nullPrf1null mice. Clin Immunol 2004; 112: 273–283.

    Article  CAS  PubMed  Google Scholar 

  43. Yu CI, Gallegos M, Marches F, Zurawski G, Ramilo O, García-Sastre A et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood 2008; 112: 3671–3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Racki WJ, Covassin L, Brehm M, Pino S, Ignotz R, Dunn R et al. NOD-scid IL2rγnull mouse model of human skin transplantation and allograft rejection. Transplantation 2010; 89: 527–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134: 577–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Covassin L, Laning J, Abdi R, Langevin DL, Phillips NE, Shultz LD et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rγnull H2-Ab1tm1Gru Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin Exp Immunol 2011; 166: 269–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann-Fezer G, Gall C, Zengerle U, Kranz B, Thierfelder S . Immunohistology and immunocytology of human T-cell chimerism and graft-versus-host disease in SCID mice. Blood 1993; 81: 3440–3448.

    CAS  PubMed  Google Scholar 

  48. Sandhu JS, Gorczynski R, Shpitz B, Gallinger S, Nguyen HP, Hozumi N . A human model of xenogeneic graft-versus-host disease in SCID mice engrafted with human peripheral blood lymphocytes. Transplantation 1995; 60: 179–184.

    Article  CAS  PubMed  Google Scholar 

  49. Huppes W, Hoffmann-Fezer G . Peripheral blood leukocyte grafts that induce human to mouse graft-vs.-host disease reject allogeneic human skin grafts. Am J Pathol 1995; 147: 1708–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag 1null) interleukin (IL)-2 receptor common gamma chain (IL 2 rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154: 270–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 2009; 6: 5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006; 12: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  53. Brainard D, Seung E, Frahm N, Cariappa A, Bailey C, Hart W et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in HIV-infected humanized BLT mice. J Virol 2009; 83: 7305–7321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008; 5: e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lee WP, Yaremchuk MJ, Pan YC, Randolph MA, Tan CM, Weiland AJ . Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg 1991; 87: 401–411.

    Article  CAS  PubMed  Google Scholar 

  56. Alegre ML, Peterson LJ, Jeyarajah DR, Weiser M, Bluestone JA, Thistlethwaite JR . Severe combined immunodeficient mice engrafted with human splenocytes have functional human T cells and reject human allografts. J Immunol 1994; 153: 2738–2749.

    CAS  PubMed  Google Scholar 

  57. Kawamura T, Niguma T, Fechner JH Jr, Wolber R, Beeskau MA, Hullett DA et al. Chronic human skin graft rejection in severe combined immunodeficient mice engrafted with human PBL from an HLA-presensitized donor. Transplantation 1992; 53: 659–665.

    Article  CAS  PubMed  Google Scholar 

  58. Murray AG, Petzelbauer P, Hughes CC, Costa J, Askenase P, Pober JS . Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse. Proc Natl Acad Sci USA 1994; 91: 9146–9150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murray AG, Schechner JS, Epperson DE, Sultan P, McNiff JM, Hughes CC et al. Dermal microvascular injury in the human peripheral blood lymphocyte reconstituted-severe combined immunodeficient (HuPBL-SCID) mouse/skin allograft model is T cell mediated and inhibited by a combination of cyclosporine and rapamycin. Am J Pathol 1998; 153: 627–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rayner D, Nelson R, Murray AG . Noncytolytic human lymphocytes injure dermal microvessels in the huPBL-SCID skin graft model. Hum Immunol 2001; 62: 598–606.

    Article  CAS  PubMed  Google Scholar 

  61. Sultan P, Schechner JS, McNiff JM, Hochman PS, Hughes CC, Lorber MI et al. Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras. Nat Biotechnol 1997; 15: 759–762.

    Article  CAS  PubMed  Google Scholar 

  62. Mosier DE, Stell KL, Gulizia RJ, Torbett BE, Gilmore GL . Homozygous scid/scid;beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation. J Exp Med 1993; 177: 191–194.

    Article  CAS  PubMed  Google Scholar 

  63. Roder JC, Helfand SL, Werkmeister J, McGarry R, Beaumont TJ, Duwe A . Oxygen intermediates are triggered early in the cytolytic pathway of human NK cells. Nature 1982; 298: 569–572.

    Article  CAS  PubMed  Google Scholar 

  64. Kirkiles-Smith NC, Harding MJ, Shepherd BR, Fader SA, Yi T, Wang Y et al. Development of a humanized mouse model to study the role of macrophages in allograft injury. Transplantation 2009; 87: 189–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shiao SL, McNiff JM, Pober JS . Memory T cells and their costimulators in human allograft injury. J Immunol 2005; 175: 4886–4896.

    Article  CAS  PubMed  Google Scholar 

  66. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M . 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 2001; 7: 245–248.

    Article  CAS  PubMed  Google Scholar 

  67. Shiao S, Kirkiles-Smith N, Shepherd B, Mcniff J, Carr E, Pober J . Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 2007; 179: 4397.

    Article  CAS  PubMed  Google Scholar 

  68. Turgeon NA, Banuelos SJ, Shultz LD, Lyons BL, Iwakoshi N, Greiner DL et al. Alloimmune injury and rejection of human skin grafts on human peripheral blood lymphocyte-reconstituted non-obese diabetic severe combined immunodeficient beta2-microglobulin-null mice. Exp Biol Med (Maywood) 2003; 228: 1096–1104.

    Article  CAS  Google Scholar 

  69. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB et al. Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 1997; 158: 3578–3586.

    CAS  PubMed  Google Scholar 

  70. Wagar EJ, Cromwell MA, Shultz LD, Woda BA, Sullivan JL, Hesselton RM et al. Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice. J Immunol 2000; 165: 518–527.

    Article  CAS  PubMed  Google Scholar 

  71. Issa F, Hester J, Goto R, Nadig SN, Goodacre TE, Wood K . Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 2010; 90: 1321–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sagoo P, Ali N, Garg G, Nestle FO, Lechler RI, Lombardi G . Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med 2011; 3: 83ra42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Halban PA, German MS, Kahn SE, Weir GC . Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 2010; 95: 1034–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Naftanel MA, Harlan DM . Pancreatic islet transplantation. PLoS Med 2004; 1: e58; quiz e75.

    Article  PubMed  CAS  Google Scholar 

  75. Harlan DM, Rother KI . Islet transplantation as a treatment for diabetes. N Engl J Med 2004; 350: 2104; author reply 2104.

  76. Harlan DM, Kenyon NS, Korsgren O, Roep BO . Current advances and travails in islet transplantation. Diabetes 2009; 58: 2175–2184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rother KI, Harlan DM . Challenges facing islet transplantation for the treatment of type 1 diabetes mellitus. J Clin Invest 2004; 114: 877–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ricordi C, Strom TB . Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 2004; 4: 259–268.

    Article  CAS  PubMed  Google Scholar 

  79. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54: 2060–2069.

    Article  CAS  PubMed  Google Scholar 

  80. London NJ, Thirdborough SM, Swift SM, Bell PR, James RF . The diabetic ‘human reconstituted’ severe combined immunodeficient (SCID-hu) mouse: a model for isogeneic, allogeneic, and xenogeneic human islet transplantation. Transplant Proc 1991; 23: 749.

    CAS  PubMed  Google Scholar 

  81. Shiroki R, Poindexter NJ, Woodle ES, Hussain MS, Mohanakumar T, Scharp DW . Human peripheral blood lymphocyte reconstituted severe combined immunodeficient (hu-PBL-SCID) mice. A model for human islet allograft rejection. Transplantation 1994; 57: 1555–1562.

    Article  CAS  PubMed  Google Scholar 

  82. Mathew JM, Blomberg B, Ricordi C, Esquenazi V, Miller J . Evaluation of the tolerogenic effects of donor bone marrow cells using a severe combined immunodeficient mouse–human islet transplant model. Hum Immunol 2008; 69: 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobson S, Heuts F, Juarez J, Hultcrantz M, Korsgren O, Svensson M et al. Alloreactivity but failure to reject human islet transplants by humanized Balb/c/Rag2−/−gc−/− mice. Scand J Immunol 2010; 71: 83–90.

    Article  CAS  PubMed  Google Scholar 

  84. Brehm MA, Bortell R, Diiorio P, Leif J, Laning J, Cuthbert A et al. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rγnullIns2Akita mice. Diabetes 2010; 59: 2265–2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ron D . Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J Clin Invest 2002; 109: 443–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mathews CE, Langley SH, Leiter EH . New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002; 73: 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshioka M, Kayo T, Ikeda T, Koizumi A . A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 1997; 46: 887–894.

    Article  CAS  PubMed  Google Scholar 

  88. Bolzan AD, Bianchi MS . Genotoxicity of streptozotocin. Mutat Res 2002; 512: 121–134.

    Article  CAS  PubMed  Google Scholar 

  89. Libby P, Pober JS . Chronic rejection. Immunity 2001; 14: 387–397.

    Article  CAS  PubMed  Google Scholar 

  90. Thomsen M, Galvani S, Canivet C, Kamar N, Bohler T . Reconstitution of immunodeficient SCID/beige mice with human cells: applications in preclinical studies. Toxicology 2008; 246: 18–23.

    Article  CAS  PubMed  Google Scholar 

  91. Lorber MI, Wilson JH, Robert ME, Schechner JS, Kirkiles N, Qian HY et al. Human allogeneic vascular rejection after arterial transplantation and peripheral lymphoid reconstitution in severe combined immunodeficient mice. Transplantation 1999; 67: 897–903.

    Article  CAS  PubMed  Google Scholar 

  92. Koh KP, Wang Y, Yi T, Shiao SL, Lorber MI, Sessa WC et al. T cell-mediated vascular dysfunction of human allografts results from IFN-γdysregulation of NO synthase. J Clin Invest 2004; 114: 846–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lebastchi AH, Khan SF, Qin L, Li W, Zhou J, Hibino N et al. Transforming growth factor beta expression by human vascular cells inhibits interferon gamma production and arterial media injury by alloreactive memory T cells. Am J Transplant 2011; 11: 2332–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rao DA, Eid RE, Qin L, Yi T, Kirkiles-Smith NC, Tellides G et al. Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. J Exp Med 2008; 205: 3145–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Y, Ahmad U, Yi T, Zhao L, Lorber MI, Pober JS et al. Alloimmune-mediated vascular remodeling of human coronary artery grafts in immunodeficient mouse recipients is independent of preexisting atherosclerosis. Transplantation 2007; 83: 1501–1505.

    Article  PubMed  Google Scholar 

  96. Feng G, Nadig SN, Backdahl L, Beck S, Francis RS, Schiopu A et al. Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection. Sci Transl Med 2011; 3: 83ra40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nadig SN, Wieckiewicz J, Wu DC, Warnecke G, Zhang W, Luo S et al. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat Med 2010; 16: 809–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health research grants AI46629, HL077642, CA34196, DK089572, an institutional Diabetes Endocrinology Research Center (DERC) grant DK32520, a grant from the University of Massachusetts Center for AIDS Research, P30 AI042845 and grants from the JDRF, the Helmsley Foundation and USAMRIID. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Brehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, M., Shultz, L. Human allograft rejection in humanized mice: a historical perspective. Cell Mol Immunol 9, 225–231 (2012). https://doi.org/10.1038/cmi.2011.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.64

Keywords

This article is cited by

Search

Quick links