Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34+ cells

Abstract

Small animal models with functional human lymphohematopoietic systems are highly valuable for the study of human immune function under physiological and pathological conditions. Over the last two decades, numerous efforts have been devoted towards the development of such humanized mouse models. This review is focused on human lymphohematopoietic reconstitution and immune function in humanized mice by cotransplantation of human fetal thymic tissue and CD34+ cells. The potential use of these humanized mice in translational biomedical research is also discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    Article  CAS  Google Scholar 

  2. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    Article  CAS  Google Scholar 

  3. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106: 1565–1573.

    Article  CAS  Google Scholar 

  4. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    Article  CAS  Google Scholar 

  5. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  Google Scholar 

  6. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027.

    Article  CAS  Google Scholar 

  7. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL et al. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rγnull mice. PLoS ONE 2009; 4: e7251.

    Article  Google Scholar 

  8. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 2009; 206: 1423–1434.

    Article  Google Scholar 

  9. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol 2009; 21: 843–858.

    Article  CAS  Google Scholar 

  10. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE 2011; 6: e19826.

    Article  CAS  Google Scholar 

  11. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999; 162: 5317–5326.

    CAS  Google Scholar 

  12. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005; 436: 1181–1185.

    Article  CAS  Google Scholar 

  13. Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D et al. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2−/−γC−/− mice in vivo. Blood 2008; 112: 2858–2868.

    Article  CAS  Google Scholar 

  14. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002; 3: 673–680.

    Article  CAS  Google Scholar 

  15. Reche PA, Soumelis V, Gorman DM, Clifford T, Liu M, Travis M et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 2001; 167: 336–343.

    Article  CAS  Google Scholar 

  16. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM . Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med 1990; 172: 1055–1063.

    Article  CAS  Google Scholar 

  17. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    Article  CAS  Google Scholar 

  18. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM . Infection of the SCID-hu mouse by HIV-1. Science 1988; 242: 1684–1686.

    Article  CAS  Google Scholar 

  19. Lan P, Wang L, Diouf B, Eguchi H, Su H, Bronson R et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood 2004; 103: 3964–3969.

    Article  CAS  Google Scholar 

  20. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG . Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006; 108: 487–492.

    Article  CAS  Google Scholar 

  21. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  22. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD . High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 1995; 172: 974–982.

    Article  CAS  Google Scholar 

  23. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L . Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 1996; 88: 3731–3740.

    CAS  PubMed  Google Scholar 

  24. Stefanova I, Dorfman JR, Germain RN . Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 2002; 420: 429–434.

    Article  CAS  Google Scholar 

  25. McLellan AD, Kampgen E . Functions of myeloid and lymphoid dendritic cells. Immunol Lett 2000; 72: 101–105.

    Article  CAS  Google Scholar 

  26. Liu YJ . Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001; 106: 259–262.

    Article  CAS  Google Scholar 

  27. Tonomura N, Habiro K, Shimizu A, Sykes M, Yang YG . Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood 2008; 111: 4293–4296.

    Article  CAS  Google Scholar 

  28. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006; 12: 1316–1322.

    Article  CAS  Google Scholar 

  29. Manz MG, Di Santo JP . Renaissance for mouse models of human hematopoiesis and immunobiology. Nat Immunol 2009; 10: 1039–1042.

    Article  CAS  Google Scholar 

  30. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14: 179–205.

    Article  CAS  Google Scholar 

  31. Onoe T, Kalscheuer H, Chittenden M, Zhao G, Yang YG, Sykes M . Homeostatic expansion and phenotypic conversion of human T cells depend on peripheral interactions with APCs. J Immunol 2010; 184: 6756–6765.

    Article  CAS  Google Scholar 

  32. Tonomura N, Shimizu A, Wang S, Yamada K, Tchipashvili V, Weir GC et al. Pig islet xenograft rejection in a mouse model with an established human immune system. Xenotransplantation 2008; 15: 129–135.

    Article  Google Scholar 

  33. Habiro K, Sykes M, Yang YG . Induction of human T-cell tolerance to pig xenoantigens via thymus transplantation in mice with an established human immune system. Am J Transplant 2009; 9: 1324–1329.

    Article  CAS  Google Scholar 

  34. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009; 83: 7305–7321.

    Article  CAS  Google Scholar 

  35. Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang YG et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol 2011; 187: 3895–3903.

    Article  CAS  Google Scholar 

  36. Duan K, Zhang B, Zhang W, Zhao Y, Qu Y, Sun C et al. Efficient peripheral construction of functional human regulatory CD4+CD25highFoxp3+ T cells in NOD/SCID mice grafted with fetal human thymus/liver tissues and CD34+ cells. Transpl Immunol 2011; 25: 173–179.

    Article  CAS  Google Scholar 

  37. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184: 3433–3441.

    Article  CAS  Google Scholar 

  38. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 2011; 186: 3918–3926.

    Article  CAS  Google Scholar 

  39. Greiner DL, Hesselton RA, Shultz LD . SCID mouse models of human stem cell engraftment. Stem Cells 1998; 16: 166–177.

    Article  CAS  Google Scholar 

  40. Gapin L . iNKT cell autoreactivity: what is ‘self’ and how is it recognized? Nat Rev Immunol 2010; 10: 272–277.

    Article  CAS  Google Scholar 

  41. Kronenberg M . Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005; 23: 877–900.

    Article  CAS  Google Scholar 

  42. Brigl M, Brenner MB . CD1: antigen presentation and T cell function. Annu Rev Immunol 2004; 22: 817–890.

    Article  CAS  Google Scholar 

  43. Lockridge JL, Chen X, Zhou Y, Rajesh D, Roenneburg DA, Hegde S et al. Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS ONE 2011; 6: e21701.

    Article  CAS  Google Scholar 

  44. Mrozek E, Anderson P, Caligiuri MA . Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2632–2640.

    CAS  Google Scholar 

  45. Rosenzwajg M, Canque B, Gluckman JC . Human dendritic cell differentiation pathway from CD34+ hematopoietic precursor cells. Blood 1996; 87: 535–544.

    CAS  PubMed  Google Scholar 

  46. Stec M, Weglarczyk K, Baran J, Zuba E, Mytar B, Pryjma J et al. Expansion and differentiation of CD14+CD16 and CD14++CD16+ human monocyte subsets from cord blood CD34+ hematopoietic progenitors. J Leukoc Biol 2007; 82: 594–602.

    Article  CAS  Google Scholar 

  47. Leary AG, Yang YC, Clark SC, Gasson JC, Golde DW, Ogawa M . Recombinant gibbon interleukin 3 supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1987; 70: 1343–1348.

    CAS  PubMed  Google Scholar 

  48. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23: 69–74.

    Article  CAS  Google Scholar 

  49. Eisenman J, Ahdieh M, Beers C, Brasel K, Kennedy MK, Le T et al. Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine 2002; 20: 121–129.

    Article  CAS  Google Scholar 

  50. Metcalf D . The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 1986; 67: 257–267.

    CAS  Google Scholar 

  51. Mosmann TR, Yokota T, Kastelein R, Zurawski SM, Arai N, Takebe Y . Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4). J Immunol 1987; 138: 1813–1816.

    CAS  PubMed  Google Scholar 

  52. Fixe P, Praloran V . Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure–function relationships. Eur Cytokine Netw 1997; 8: 125–136.

    CAS  PubMed  Google Scholar 

  53. Stevenson LM, Jones DG . Cross-reactivity amongst recombinant haematopoietic cytokines from different species for sheep bone-marrow eosinophils. J Comp Pathol 1994; 111: 99–106.

    Article  CAS  Google Scholar 

  54. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34.

    Article  CAS  Google Scholar 

  55. Chen Q, Khoury M, Chen J . Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 2009; 106: 21783–21788.

    Article  CAS  Google Scholar 

  56. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    Article  CAS  Google Scholar 

  57. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390–2395.

    Article  CAS  Google Scholar 

  58. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 2011; 118: 3119–3128.

    Article  CAS  Google Scholar 

  59. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383.

    Article  CAS  Google Scholar 

  60. Hu Z, Van Rooijen N, Yang YG . Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood 2011; 118: 5719–5720.

    Article  Google Scholar 

  61. Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P et al. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood 2007; 109: 836–842.

    Article  CAS  Google Scholar 

  62. Wang H, Madariaga ML, Wang S, van Rooijen N, Oldenborg PA, Yang YG . Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells. Proc Natl Acad Sci USA 2007; 104: 13744–13749.

    Article  CAS  Google Scholar 

  63. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T et al. Role for CD47–SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 2007; 104: 5062–5066.

    Article  CAS  Google Scholar 

  64. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313–1323.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Goda Choi for critical reading of the manuscript. We apologize to those investigators whose work could not be cited as a result of space limitations. The work from the authors' laboratory discussed in this review was supported by grants from NIH (RC1 HL100117, R01 AI064569, PO1 CA111519 and PO1 AI045897) and JDRF (1-2005-72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Guang Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, Z., Yang, YG. Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34+ cells. Cell Mol Immunol 9, 232–236 (2012). https://doi.org/10.1038/cmi.2011.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.63

Keywords

  • humanized mouse
  • hematopoiesis
  • immune system
  • immunodeficient mouse
  • thymopoiesis

This article is cited by

Search

Quick links