Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance

Abstract

E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    CAS  PubMed  Google Scholar 

  2. Chen ZJ, Sun LJ . Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33: 275–286.

    CAS  PubMed  Google Scholar 

  3. Sun SC . Deubiquitylation and regulation of the immune response. Nat Rev Immunol 2008; 8: 501–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ardley HC, Robinson PA . E3 ubiquitin ligases. Essays Biochem 2005; 41: 15–30.

    CAS  PubMed  Google Scholar 

  5. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 2008; 3: e1487.

    PubMed  PubMed Central  Google Scholar 

  6. Deshaies RJ, Joazeiro CA . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78: 399–434.

    CAS  PubMed  Google Scholar 

  7. Moynagh PN . The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 2009; 30: 33–42.

    CAS  PubMed  Google Scholar 

  8. Schauvliege R, Janssens S, Beyaert R . Pellino proteins: novel players in TLR and IL-1R signalling. J Cell Mol Med 2007; 11: 453–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang M, Jin W, Sun SC . Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol 2009; 10: 1089–1095.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang M, Jin W, Chang JH, Xiao Y, Brittain GC, Yu J et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat Immunol 2011; 12: 1002–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith H, Peggie M, Campbell DG, Vandermoere F, Carrick E, Cohen P . Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proc Natl Acad Sci USA 2009; 106: 4584–4590.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith H, Liu XY, Dai L, Goh ET, Chan AT, Xi J et al. The role of TBK1 and IKKεpsilon in the expression and activation of Pellino 1. Biochem J 2011; 434: 537–548.

    CAS  PubMed  Google Scholar 

  13. Goh ET, Arthur JS, Cheung PC, Akira S, Toth R, Cohen P . Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochem J in press; 2011.

  14. Sun SC, Ley SC . New insights into NF-kappaB regulation and function. Trends Immunol 2008; 29: 469–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Chen ZJ . Expanding role of ubiquitination in NF-κB signaling. Cell Res 2011; 21: 6–21.

    PubMed  Google Scholar 

  16. Vallabhapurapu S, Karin M . Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693–733.

    CAS  PubMed  Google Scholar 

  17. Hayden MS, Ghosh S . NF-κB in immunobiology. Cell Res 2011; 21: 223–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Neriah Y, Karin M . Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 2011; 12: 715–723.

    CAS  PubMed  Google Scholar 

  19. Sun SC . Non-canonical NF-κB signaling pathway. Cell Res 2011; 21: 71–85.

    CAS  PubMed  Google Scholar 

  20. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252–256.

    CAS  PubMed  Google Scholar 

  21. Wang C, Deng L, Hong M, Akkaraju GR, Inoue JI, Chen ZJ . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 346–351.

    CAS  PubMed  Google Scholar 

  22. Chen ZJ, Bhoj V, Seth RB . Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 2006; 13: 687–692.

    CAS  PubMed  Google Scholar 

  23. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461: 114–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen ZJ . Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    CAS  PubMed  Google Scholar 

  26. Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher MA . Rip1 mediates the TRIF-dependent Toll-like receptor 3- and 4-induced NF-kappaB activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 2005; 280: 36560–36566.

    CAS  PubMed  Google Scholar 

  27. Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006; 439: 204–207.

    PubMed  Google Scholar 

  28. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006; 439: 208–211.

    CAS  PubMed  Google Scholar 

  29. Chuang TH, Ulevitch RJ . Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004; 5: 495–502.

    CAS  PubMed  Google Scholar 

  30. Bachmaier K, Toya S, Gao X, Triantafillou T, Garrean S, Park GY et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat Med 2007; 13: 920–926.

    CAS  PubMed  Google Scholar 

  31. Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M . Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010; 11: 70–75.

    CAS  PubMed  Google Scholar 

  32. Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X et al. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKCzeta. J Exp Med 2011; 208: 2099–2112.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008; 321: 663–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hultmark D . Drosophila immunity: paths and patterns. Curr Opin Immunol 2003; 15: 12–19.

    CAS  PubMed  Google Scholar 

  35. Ferrandon D, Imler JL, Hetru C, Hoffmann JA . The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7: 862–874.

    CAS  PubMed  Google Scholar 

  36. Boman HG, Steiner H . Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol 1981; 94–95: 75–91.

    PubMed  Google Scholar 

  37. Sun SC, Faye I . Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear factor κB. Eur J Biochem 1992; 204: 885–892.

    CAS  PubMed  Google Scholar 

  38. Sun SC, Faye I . Affinity purification and characterization of CIF, a Cecropia DNA-binding protein involved in the induction of the immune genes. Comp Biochem Physiol 1992; 103B: 225–233.

    CAS  Google Scholar 

  39. Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 1993; 75: 753–763.

    CAS  PubMed  Google Scholar 

  40. Towb P, Sun H, Wasserman SA . Tube Is an IRAK-4 homolog in a Toll pathway adapted for development and immunity. J Innate Immun 2009; 1: 309–321.

    CAS  PubMed  Google Scholar 

  41. Grosshans J, Bergmann A, Haffter P, Nusslein-Volhard C . Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo. Nature 1994; 372: 563–566.

    CAS  PubMed  Google Scholar 

  42. Grosshans J, Schnorrer F, Nüsslein-Volhard C . Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech Dev 1999; 81: 127–138.

    CAS  PubMed  Google Scholar 

  43. Haghayeghi A, Sarac A, Czerniecki S, Grosshans J, Schock F . Pellino enhances innate immunity in Drosophila. Mech Dev 2010; 127: 301–307.

    CAS  PubMed  Google Scholar 

  44. Rich T, Allen RL, Lucas AM, Stewart A, Trowsdale J . Pellino-related sequences from Caenorhabditis elegans and Homo sapiens. Immunogenetics 2000; 52: 145–149.

    CAS  PubMed  Google Scholar 

  45. Resch K, Jockusch H, Schmitt-John T . Assignment of homologous genes, Peli1/PELI1 and Peli2/PELI2, for the Pelle adaptor protein Pellino to mouse chromosomes 11 and 14 and human chromosomes 2p13.3 and 14q21, respectively, by physical and radiation hybrid mapping. Cytogenet Cell Genet 2001; 92: 172–17-4.

    CAS  PubMed  Google Scholar 

  46. Yu KY, Kwon HJ, Norman DA, Vig E, Goebl MG, Harrington MA . Cutting edge: mouse pellino-2 modulates IL-1 and lipopolysaccharide signaling. J Immunol 2002; 169: 4075–4078.

    CAS  PubMed  Google Scholar 

  47. Jiang Z, Johnson HJ, Nie H, Qin J, Bird TA, Li X . Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J Biol Chem 2003; 278: 10952–10956.

    CAS  PubMed  Google Scholar 

  48. Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA . IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110: 191–202.

    CAS  PubMed  Google Scholar 

  49. Strelow A, Kollewe C, Wesche H . Characterization of Pellino2, a substrate of IRAK1 and IRAK4. FEBS Lett 2003; 547: 157–161.

    CAS  PubMed  Google Scholar 

  50. Jensen LE, Whitehead AS . Pellino2 activates the mitogen activated protein kinase pathway. FEBS Lett 2003; 545: 199–202.

    CAS  PubMed  Google Scholar 

  51. Jensen LE, Whitehead AS . Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. J Immunol 2003; 171: 1500–1506.

    CAS  PubMed  Google Scholar 

  52. Butler MP, Hanly JA, Moynagh PN . Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38-dependent manner. J Biol Chem 2005; 280: 27759–27768.

    CAS  PubMed  Google Scholar 

  53. Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L et al. Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation. J Biol Chem 2008; 283: 14654–14664.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schauvliege R, Janssens S, Beyaert R . Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett 2006; 580: 4697–4702.

    CAS  PubMed  Google Scholar 

  55. Freemont PS . The RING finger. A novel protein sequence motif related to the zinc finger. Ann NY Acad Sci 1993; 684: 174–192.

    CAS  PubMed  Google Scholar 

  56. Butler MP, Hanly JA, Moynagh PN . Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases. J Biol Chem 2007; 282: 29729–29737.

    CAS  PubMed  Google Scholar 

  57. Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N et al. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 2008; 409: 43–52.

    CAS  PubMed  Google Scholar 

  58. Gauthier ME, Du Pasquier L, Degnan BM . The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev 2010; 12: 519–533.

    CAS  PubMed  Google Scholar 

  59. Lin CC, Huoh YS, Schmitz KR, Jensen LE, Ferguson KM . Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Structure 2008; 16: 1806–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP et al. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 2000; 6: 1169–1182.

    CAS  PubMed  Google Scholar 

  61. Hunter T . The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007; 28: 730–738.

    CAS  PubMed  Google Scholar 

  62. Kee Y, Huibregtse JM . Regulation of catalytic activities of HECT ubiquitin ligases. Biochem Biophys Res Commun 2007; 354: 329–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Snyder PM . Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2. Sci Signal 2009; 2: pe41.

    PubMed  Google Scholar 

  64. Meek DW, Hupp TR . The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 2010; 20: 19–28.

    CAS  PubMed  Google Scholar 

  65. Kim JH, Sung KS, Jung SM, Lee YS, Kwon JY, Choi CY et al. Pellino-1, an adaptor protein of interleukin-1 receptor/toll-like receptor signaling, is sumoylated by Ubc9. Mol Cells 2011; 31: 85–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hunter T, Sun H . Crosstalk between the SUMO and ubiquitin pathways. Ernst Schering Found Symp Proc 2008; 1: 1–16.

    Google Scholar 

  67. Weighardt H, Jusek G, Mages J, Lang R, Hoebe K, Beutler B et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur J Immunol 2004; 34: 558–564.

    CAS  PubMed  Google Scholar 

  68. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT et al. IKKεpsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4: 491–496.

    CAS  PubMed  Google Scholar 

  69. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J . Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300: 1148–1151.

    CAS  PubMed  Google Scholar 

  70. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP . MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298: G535–G541.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng C, Radu C, Diab A, Tsen MF, Hussain R, Cowdery JS et al. IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. J Immunol 2003; 170: 2833–2842.

    CAS  PubMed  Google Scholar 

  72. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 2008; 9: 684–691.

    CAS  PubMed  Google Scholar 

  73. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 2004; 5: 503–507.

    CAS  PubMed  Google Scholar 

  74. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG . Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005; 435: 590–597.

    CAS  PubMed  Google Scholar 

  75. Tzachanis D, Lafuente EM, Li L, Boussiotis VA . Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk Lymphoma 2004; 45: 1959–1967.

    CAS  PubMed  Google Scholar 

  76. von Boehmer H . Mechanisms of suppression by suppressor T cells. Nat Immunol 2005; 6: 338–344.

    CAS  PubMed  Google Scholar 

  77. Wells AD . New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 2009; 182: 7331–7341.

    CAS  PubMed  Google Scholar 

  78. Wan YY . Regulatory T cells: immune suppression and beyond. Cell Mol Immunol 2010; 7: 204–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maggirwar SB, Harhaj EW, Sun SC . Regulation of the interleukin-2 CD28 responsive element by NF-ATp and various NF-κB/Rel transcription factors. Mol Cell Biol 1997; 17: 2605–2614.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Köntgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoural immunity, and interleukin-2 expression. Genes Dev 1995; 9: 1965–1977.

    PubMed  Google Scholar 

  81. Liou HC, Jin Z, Tumang J, Andjelic S, Smith KA, Liou ML . c-Rel is crucial for lymphocyte proliferation but dispensable for T cell effector function. Int Immunol 1999; 11: 361–371.

    CAS  PubMed  Google Scholar 

  82. Hilliard BA, Mason N, Xu L, Sun J, Lamhamedi-Cherradi SE, Liou HC et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J Clinic Invest 2002; 110: 843–850.

    CAS  Google Scholar 

  83. Mason NJ, Liou HC, Hunter CA . T cell-intrinsic expression of c-Rel regulates Th1 cell responses essential for resistance to Toxoplasma gondii. J Immunol 2004; 172: 3704–3711.

    CAS  PubMed  Google Scholar 

  84. Banerjee D, Liou HC, Sen R . c-Rel-dependent priming of naive T cells by inflammatory cytokines. Immunity 2005; 23: 445–458.

    CAS  PubMed  Google Scholar 

  85. Chen G, Hardy K, Bunting K, Daley S, Ma L, Shannon MF . Regulation of the IL-21 gene by the NF-kappaB transcription factor c-Rel. J Immunol 2010; 185: 2350–2359.

    CAS  PubMed  Google Scholar 

  86. Deenick EK, Po L, Chapatte L, Murakami K, Lu YC, Elford AR et al. c-Rel phenocopies PKCtheta but not Bcl-10 in regulating CD8+ T-cell activation versus tolerance. Eur J Immunol 2010; 40: 867–877.

    CAS  PubMed  Google Scholar 

  87. Guo X, Wang XF . Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 2009; 19: 71–88.

    CAS  PubMed  Google Scholar 

  88. Choi KC, Lee YS, Lim S, Choi HK, Lee CH, Lee EK et al. Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1. Nat Immunol 2006; 7: 1057–1065.

    CAS  PubMed  Google Scholar 

  89. Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ et al. Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun 2010; 393: 836–843.

    CAS  PubMed  Google Scholar 

  90. Letterio JJ, Roberts AB . Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137–161.

    CAS  PubMed  Google Scholar 

  91. Li MO, Flavell RA . TGF-beta: a master of all T cell trades. Cell 2008; 134: 392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    CAS  PubMed  Google Scholar 

  93. Massague J . How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000; 1: 169–178.

    CAS  PubMed  Google Scholar 

  94. Itoh S, Itoh F, Goumans MJ, Ten Dijke P . Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 2000; 267: 6954–6967.

    CAS  PubMed  Google Scholar 

  95. Moustakas A, Souchelnytskyi S, Heldin CH . Smad regulation in TGF-beta signal transduction. J Cell Sci 2001; 114: 4359–4369.

    CAS  PubMed  Google Scholar 

  96. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997; 389: 622–666.

    CAS  PubMed  Google Scholar 

  97. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997; 89: 1165–1173.

    CAS  PubMed  Google Scholar 

  98. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001; 276: 12477–12480.

    CAS  PubMed  Google Scholar 

  99. Ulloa L, Doody J, Massague J . Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999; 397: 710–713.

    CAS  PubMed  Google Scholar 

  100. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 2000; 14: 187–197.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research of S-CS is supported by grants from the US National Institutes of Health (AI057555, AI064639 and GM84459) and the GS Hogan Gastrointestinal Cancer Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jin or Shao-Cong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Chang, M. & Sun, SC. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 9, 113–122 (2012). https://doi.org/10.1038/cmi.2011.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.60

Keywords

This article is cited by

Search

Quick links