Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Liver fibrosis: mechanisms of immune-mediated liver injury

Abstract

Liver fibrosis and its end-stage consequence, cirrhosis, represent the final common pathway of virtually all chronic liver diseases. Research into hepatic stellate cell activation, imbalance of the extracellular matrix synthesis and degradation and the contribution of cytokines and chemokines has further elucidated the mechanisms underlying fibrosis. Furthermore, clarification of changes in host adaptive and innate immune systems has accelerated our understanding of the association between liver inflammation and fibrosis. Continued elucidation of the mechanisms of hepatic fibrosis has provided a comprehensive model of fibrosis progression and regression. This review summarizes the current concepts of improvements that have been made in the field of fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Balabaud C, Bioulac-Sage P, Desmouliere A . The role of hepatic stellate cells in liver regeneration. J Hepatol 2004; 40: 1023–1026.

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez-Gea V, Friedman SL . Pathogenesis of liver fibrosis. Annu Rev Pathol 2010; 6: 425–456.

    Article  Google Scholar 

  3. Sangiovanni A, Prati GM, Fasani P . The natural history of compensated cirrhosis due to hepatitis C virus: a 17-year cohort study of 214 patients. Hepatology 2006; 43: 1303–1310.

    Article  PubMed  Google Scholar 

  4. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P et al. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up of 384 patients. Gastroenterology 1997; 112: 463–472.

    Article  CAS  PubMed  Google Scholar 

  5. Desmet VJ, Roskams T . Cirrhosis reversal: a duel between dogma and myth. J Hepatol 2004; 40: 860–867.

    Article  PubMed  Google Scholar 

  6. Iredale JP . Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fallowfield JA, Iredale JP . Targeted treatments for cirrhosis. Expert Opin Ther Targets 2004; 8: 423–435.

    Article  CAS  PubMed  Google Scholar 

  8. Blomhoff R, Berg T . Isolation and cultivation of rat liver stellate cells. Methods Enzymol 1990; 190: 58–71.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman SL . Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247–2250.

    Article  CAS  PubMed  Google Scholar 

  10. Alison MR, Vig P, Russo F, Bigger BW, Amofah E, Themis M et al. Hepatic stem cells: from inside and outside the liver? Cell Prolif 2004; 37: 1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wake K . Three-dimensional structure of the sinusoidal wall in the liver: a Golgi study. Prog Clin Biol Res 1989; 295: 257–262.

    CAS  PubMed  Google Scholar 

  12. Gressner AM, Weiskirchen R . Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 2006; 10: 76–99.

    Article  CAS  PubMed  Google Scholar 

  13. Bataller R, Brenner DA . Liver fibrosis. J Clin Invest 2005; 115: 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T . Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002; 36: 200–209.

    Article  PubMed  Google Scholar 

  15. Gores GJ, Kaufmann SH . Is TRAIL hepatotoxic? Hepatology 2001; 34: 3–6.

    Article  CAS  PubMed  Google Scholar 

  16. Fischer R . Cariers A, Reinehr R, Häussinger D. Caspase 9-dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology 2002; 123: 845–861.

    Article  CAS  PubMed  Google Scholar 

  17. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA . Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide (LPS) in human hepatic stellate cells. Hepatology 2003; 37: 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  18. Elsharkawy AM, Oakley F, Mann DA . The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005; 10: 927–939.

    Article  CAS  PubMed  Google Scholar 

  19. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez-Gea V, Friedman SL . Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425–456.

    Article  CAS  PubMed  Google Scholar 

  21. Higashiyama R, Moro T, Nakao S, Mikami K, Fukumitsu H, Ueda Y et al. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 2009; 137: 1459–1466.

    Article  CAS  PubMed  Google Scholar 

  22. Kalluri R, Neilson EG . Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geerts A . History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21: 311–335.

    Article  CAS  PubMed  Google Scholar 

  24. Schuppan D, Ruehl M, Somasundaram R, Hahn EG . Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2011; 21: 351–372.2001;

    Article  Google Scholar 

  25. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y . Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 1997; 272: 2446–2451.

    Article  CAS  PubMed  Google Scholar 

  26. Aimes RT, Quigley JP . Matrix metalloproteinase-2 is an interstitial collagenase—inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem 1995; 270: 5872–5876.

    Article  CAS  PubMed  Google Scholar 

  27. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ . Expression of tissue inhibitor of metalloproteinases-1 and -2 is increased in fibrotic human liver. Gastroenterology 1996; 110: 821–831.

    Article  CAS  PubMed  Google Scholar 

  28. Arthur MJ, Fibrosigenesis II . Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000; 279: 4820–4828.

  29. Maher JJ . Interactions between hepatic stellate cells and the immune system. Semi Liver Dis 2001; 21: 417–426.

    Article  CAS  Google Scholar 

  30. McGaha TL, Bona CA . Role of profibrogenic cytokines secreted by T cells in fibrotic processes in scleroderma. Autoimmun Rev 2002; 1: 174–181.

    Article  CAS  PubMed  Google Scholar 

  31. Pinzani M, Vizzutti F . Fibrosis and cirrhosis reversibility: clinical features and implications. Clin Liver Dis 2008; 12: 901–913.

    Article  PubMed  Google Scholar 

  32. Mahmood S, Sho M, Yasuhara Y, Kawanaka M, Niiyama G, Togawa K et al. Clinical significance of intrahepatic interleukin-8 in chronic hepatitis C patients. Hepatol Res 2002; 24: 413–419.

    Article  CAS  PubMed  Google Scholar 

  33. Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H . Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology 2005; 128: 138–146.

    Article  CAS  PubMed  Google Scholar 

  34. Schwabe RF, Bataller R, Brenner DA . Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003; 285: G949–G958.

    Article  CAS  PubMed  Google Scholar 

  35. Zeremski M, Petrovic LM, Chiriboga L, Brown QB, Yee HT, Kinkhabwala M et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 2008; 48: 1440–1450.

    Article  CAS  PubMed  Google Scholar 

  36. Bonacchi A, Petrai I, Defranco RM, Lazzeri E, Annunziato F, Efsen E et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 2003; 125: 1060–1076.

    Article  CAS  PubMed  Google Scholar 

  37. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 2009; 49: 2055–2067.

    Article  CAS  PubMed  Google Scholar 

  38. Seki E, de Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13: 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  39. Huang H, Shiffman ML, Friedman S, Venkatesh R, Bzowej N, Abar OT et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007; 46: 297–306.

    Article  CAS  PubMed  Google Scholar 

  40. Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 2009; 49: 960–968.

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe A, Hashmi A, Gomes DA, Town T, Badou A, Flavell RA et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 2007; 46: 1509–1518.

    Article  CAS  PubMed  Google Scholar 

  42. Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 2008; 376: 271–276.

    Article  PubMed  Google Scholar 

  43. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S et al. Selective depletion of macrophages reveals distinct opposing roles during liver injury and repair. J Clin Invest 2005; 115: 56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rivera CA, Bradford BU, Hunt KJ, Adachi Y, Schrum LW, Koop DR et al. Attenuation of CCl4-induced hepatic fibrosis by GdCl3 treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 2002; 281: G200–G207.

    Article  Google Scholar 

  45. Ricardo SD, van Goor H, Eddy AA . Macrophage diversity in renal injury and repair. J Clin Invest 2008; 118: 3522–3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ . Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 2003; 37: 87–95.

    Article  CAS  PubMed  Google Scholar 

  47. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134: 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B . Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis inducing ligand-dependent manners. Gastroenterology 2006; 130: 435–452.

    Article  CAS  PubMed  Google Scholar 

  49. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007; 204: 667–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morishima C, Paschal DM, Wang CC, Yoshihara CS, Wood BL, Yeo AE et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology 2006; 43: 573–580.

    Article  PubMed  Google Scholar 

  51. Bonecchi R, Facchetti F, Dusi S, Luini W, Lissandrini D, Simmelink M et al. Induction of functional IL-8 receptors by IL-4 and IL-13 in human monocytes. J Immunol 2000; 164: 3862–3869.

    Article  CAS  PubMed  Google Scholar 

  52. Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest 2009; 119: 3213–3225.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A et al. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 2004; 117: 3417–3425.

    Google Scholar 

  54. Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest 2009; 119: 3213–3225.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A et al. Complement factor 5 is a quantitative trait gene that modifies liver. Nat Genet 2005; 37: 835–843.

    Article  CAS  PubMed  Google Scholar 

  56. Schlaf G, Schmitz M, Heine I, Demberg T, Schieferdecker HL, Götze O . Upregulation of fibronectin but not of entactin, collagen IV and smooth muscle actin by anaphylatoxin C5a in rat hepatic stellate cells. Histol Histopathol 2004; 19: 1165–1174.

    CAS  PubMed  Google Scholar 

  57. Mastellos D, Papadimitriou JC, Franchini S, Tsonis PA, Lambris JD . A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 2001; 166: 2479–2486.

    Article  CAS  PubMed  Google Scholar 

  58. Bykov I, Junnikkala S, Pekna M, Lindros KO, Meri S . Complement C3 contributes to ethanol-induced liver steatosis in mice. Ann Med 2006; 38: 280–286.

    Article  CAS  PubMed  Google Scholar 

  59. Bugdaci MS, Alkim C, Karaca C, Kesici B, Bayraktar B, Sokmen M . Could complement C4 be an alternative to biopsy for chronic hepatitis b histopathologic findings? J Clin Gastroenterol 2011; 45: 449–455.

    Article  CAS  PubMed  Google Scholar 

  60. Cheever AW, Williams ME, Wynn TA, Finkelman FD, Seder RA, Cox TM et al. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 1994; 153: 753–759.

    CAS  PubMed  Google Scholar 

  61. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA . An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999; 104: 777–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005; 115: 3072–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (No. 31170865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no financial or commercial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R., Zhang, Z. & Wang, FS. Liver fibrosis: mechanisms of immune-mediated liver injury. Cell Mol Immunol 9, 296–301 (2012). https://doi.org/10.1038/cmi.2011.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.53

Keywords

This article is cited by

Search

Quick links