Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Efficient induction of a Her2-specific anti-tumor response by dendritic cells pulsed with a Hsp70L1–Her2341–456 fusion protein

Abstract

Heat shock proteins (HSPs) have been shown to interact with antigen-presenting cells (APCs), especially dendritic cells (DCs). HSPs act as potent adjuvants, inducing a Th1 response, as well as antigen-specific CD8+ cytotoxic T lymphocytes (CTL) via cross-presentation. Our previous work has demonstrated that Hsp70-like protein 1 (Hsp70L1), a new member of the Hsp70 subfamily, can act as a powerful Th1 adjuvant in a DC-based vaccine. Here we report the efficient induction of tumor antigen-specific T cell immune response by DCs pulsed with recombinant fusion protein of Hsp70L1 and Her2341–456, the latter of which is a fragment of Her2/neu (Her2) containing E75 (a HLA-A2 restricted CTL epitope). The fusion protein Hsp70L1–Her2341–456 promotes the maturation of DCs and activates them to produce cytokines, such as IL-12 and TNF-α, and chemokines, such as MIP-1α, MIP-1β and RANTES. Taken together, these results indicate that the adjuvant activity of Hsp70L1 is maintained in the fusion protein. Her2-specific HLA-A2.1-restricted CD8+ CTLs can be generated efficiently either from the Peripheral blood lymphocytes (PBL) of healthy donors or from the splenocytes of immunized HLA-A2.1/Kb transgenic mice by in vitro stimulation or immunization with DCs pulsed with the Hsp70L1–Her2341–456 fusion protein. This results in more potent target cell killing in an antigen-specific and HLA-A2.1-restricted manner. Adoptive transfer of splenocytes from transgenic mice immunized with Hsp70L1–Her2341–456-pulsed DCs can markedly inhibit tumor growth and prolong the survival of nude mice with Her2+/HLA-A2.1+ human carcinomas. These results suggest that Hsp70L1–Her2341–456-pulsed DCs could be a new therapeutic vaccine for patients with Her2+ cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Srivastava PK . Therapeutic cancer vaccines. Curr Opin Immunol 2006; 18: 201–205.

    Article  CAS  Google Scholar 

  2. Bolhassani A, Rafati S . Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008; 7: 1185–1199.

    Article  CAS  Google Scholar 

  3. Srivastava PK . Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002; 20: 395–425.

    Article  CAS  Google Scholar 

  4. Enomoto Y, Bharti A, Khaleque AA, Song B, Liu C, Apostolopoulos V et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell–tumor fusion cells. J Immunol 2006; 177: 5946–5955.

    Article  CAS  Google Scholar 

  5. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK . Immunotherapy of tumors with autologous tumor derived heat shock protein preparations. Science 1997; 278: 117–120.

    Article  CAS  Google Scholar 

  6. Pilla L, Patuzzo R, Rivoltini L, Maio M, Pennacchioli E, Lamaj E et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol Immunother 2006; 55: 958–968.

    Article  CAS  Google Scholar 

  7. Wan T, Zhou X, Chen G, An H, Chen T, Zhang W et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 2004; 103: 1747–1754.

    Article  CAS  Google Scholar 

  8. Wu Y, Wan T, Zhou X, Wang B, Yang F, Li N et al. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 2005; 65: 4947–4954.

    Article  CAS  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  10. Pritchard KI, Shepherd LE, O'Malley FP, Andrulis IL, Tu D, Bramwell VH et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 2006; 354: 2103–2111.

    Article  CAS  Google Scholar 

  11. Dhesy-Thind B, Pritchard KI, Messersmith H, O'Malley FP, Elavathil L, Trudeau M . HER2/neu in systemic therapy for women with breast cancer: a systematic review. Breast Cancer Res Treat 2008; 109: 209–229.

    Article  CAS  Google Scholar 

  12. Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT et al. Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 2006; 55: 85–95.

    Article  CAS  Google Scholar 

  13. Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K et al. Cellular immunity to the HER-2/neu protooncogene. Adv Cancer Res 2002; 85: 101–144.

    Article  CAS  Google Scholar 

  14. Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, von Hofe E, Kallinteris NL et al. Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 2007; 67: 1326–1334.

    Article  Google Scholar 

  15. Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E . Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 1999; 59: 431–435.

    CAS  PubMed  Google Scholar 

  16. Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P et al. Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties. J Immunol 2008; 181: 146–154.

    Article  CAS  Google Scholar 

  17. Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 2006; 66: 7734–7740.

    Article  CAS  Google Scholar 

  18. Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN . Vaccination with human HER-2/neu435–443 CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res 2006; 66: 5452–5460.

    Article  CAS  Google Scholar 

  19. Baxevanis CN . Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 2007; 121: 2031–2041.

    Article  Google Scholar 

  20. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz K, Brugger W . Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000; 96: 3102–3108.

    CAS  PubMed  Google Scholar 

  21. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 2002; 20: 2624–2632.

    Article  CAS  Google Scholar 

  22. Disis ML, Grabstein KH, Sleath PR, Cheever MA . Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5: 1289–1297.

    CAS  PubMed  Google Scholar 

  23. Knutson KL, SchiVman K, Cheever MA, Disis ML . Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 2002; 8: 1014–1018.

    CAS  PubMed  Google Scholar 

  24. Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R et al. Dendritic cells pulsed with HER-2/neu derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 2002; 8: 3394–3400.

    CAS  PubMed  Google Scholar 

  25. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 2002; 8: 3407–3418.

    CAS  PubMed  Google Scholar 

  26. Zaks TZ, Rosenberg SA . Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 1998; 58: 4902–4908.

    CAS  PubMed  Google Scholar 

  27. Liu S, Yu Y, Zhang M, Wang W, Cao X . The involvement of TNF-α-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-β-stimulated human dendritic cells to tumor cells. J Immunol 2001; 166: 5407–5415.

    Article  CAS  Google Scholar 

  28. Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N et al. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood 2004; 104: 200–206.

    Article  CAS  Google Scholar 

  29. Cao X, Zhang W, He L, Xie Z, Ma S, Tao Q et al. Lymphotactin genemodified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J Immunol 1998; 161: 6238–6244.

    CAS  PubMed  Google Scholar 

  30. Tacken PJ, de Vries IJ, Torensma R, Figdor CG . Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7: 790–802.

    Article  CAS  Google Scholar 

  31. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  Google Scholar 

  32. Tagliabue E, Balsari A, Campiglio M, Pupa SM . HER2 as a target for breast cancer therapy. Expert Opin Biol Ther 2010; 10: 711–724.

    Article  CAS  Google Scholar 

  33. Nahta R, Esteva FJ . Herceptin: mechanisms of action and resistance. Cancer Lett 2006; 232: 123–138.

    Article  CAS  Google Scholar 

  34. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    Article  CAS  Google Scholar 

  35. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648.

    Article  CAS  Google Scholar 

  36. Bengala C, Zamagni C, Pedrazzoli P, Matteucci P, Ballestrero A, da Prada G et al. Cardiac toxicity of trastuzumab in metastatic breast cancer patients previously treated with high-dose chemotherapy: a retrospective study. Br J Cancer 2006; 94: 1016–1020.

    Article  CAS  Google Scholar 

  37. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  38. Chen Y, Sun H, Liu GY, Wang B, Wang F, Sun BC et al. EBV LMP2A-specific T cell immune responses elicited by dendritic cells loaded with LMP2A protein. Cell Mol Immunol 2009; 6: 269–276.

    Article  CAS  Google Scholar 

  39. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–422.

    Article  CAS  Google Scholar 

  40. Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I . Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59: 1295–1312.

    Article  CAS  Google Scholar 

  41. Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 2002; 8: 3394–3400.

    CAS  PubMed  Google Scholar 

  42. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 2007; 67: 1842–1852.

    Article  CAS  Google Scholar 

  43. Liu G, Yao K, Wang B, Chen Y, Zhou F, Guo Y et al. Immunotherapy of Epstein-Barr virus associated malignancies using mycobacterial HSP70 and LMP2A356–364 epitope fusion protein. Cell Mol Immunol 2009; 6: 423–431.

    Article  CAS  Google Scholar 

  44. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008; 372: 145–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Program of the Shanghai Committee of Science and Technology Development (QF, 06DZ19010), the National High Technology Research and Development Program of China (YFW, 2009AA02Z102), the National Natural Science Foundation of China (YFW, 30872296) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (TWan, 2008ZX09101-043).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Q., Wu, Y., Yan, F. et al. Efficient induction of a Her2-specific anti-tumor response by dendritic cells pulsed with a Hsp70L1–Her2341–456 fusion protein. Cell Mol Immunol 8, 424–432 (2011). https://doi.org/10.1038/cmi.2011.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.21

Keywords

This article is cited by

Search

Quick links