Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond

Abstract

Nucleotide-binding oligomerization domain (NOD)-containing protein-like receptors (NLRs) are a recently discovered class of innate immune receptors that play a crucial role in initiating the inflammatory response following pathogen recognition. Some NLRs form the framework for cytosolic platforms called inflammasomes, which orchestrate the early inflammatory process via IL-1β activation. Mutations and polymorphisms in NLR-coding genes or in genetic loci encoding inflammasome-related proteins correlate with a variety of autoinflammatory diseases. Moreover, the activity of certain inflammasomes is associated with susceptibility to infections as well as autoimmunity and tumorigenesis. In this review, we will discuss how identifying the genetic characteristics of inflammasomes is assisting our understanding of both autoinflammatory diseases as well as other immune system-driven disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Takeuchi O, Akira S . Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820.

    Article  CAS  PubMed  Google Scholar 

  2. Franchi L, Warner N, Viani K, Nunez G . Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227: 106–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkins C, Gale M Jr . Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 2010; 22: 41–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Vallejo JJ, van Kooyk Y . Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 2009; 230: 22–37.

    CAS  PubMed  Google Scholar 

  5. Kanneganti TD . Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 2010; 10: 688–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen IC, TeKippe EM, Woodford RMT, Uronis JM, Holl EK, Rogers AB et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 2010; 207: 1045–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD . IL-18 production downstream of the NLRP3 inflammasome confers protection against colorectal tumor formation. J Immunol 2010; 185: 4912–4920.

    CAS  PubMed  Google Scholar 

  8. Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA et al. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem 2010; 285: 6477-6488.

    CAS  PubMed  Google Scholar 

  9. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15: 1170–1178.

    CAS  PubMed  Google Scholar 

  10. Lespinet O, Wolf YI, Koonin EV, Aravind L . The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002; 12: 1048–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300: 349–365.

    CAS  PubMed  Google Scholar 

  12. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R . The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 2008; 3: e2119.

    PubMed  PubMed Central  Google Scholar 

  13. Bella J, Hindle KL, McEwan PA, Lovell SC . The leucine-rich repeat structure. Cell Mol Life Sci 2008; 65: 2307–2333.

    CAS  PubMed  Google Scholar 

  14. Martinon F, Tschopp J . Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117: 561–574.

    CAS  PubMed  Google Scholar 

  15. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 2007; 25: 713–724.

    CAS  PubMed  Google Scholar 

  16. Martinon F, Gaide O, Petrilli V, Mayor A, Tschopp J . NALP inflammasomes: a central role in innate immunity. Semin Immunopathol 2007; 29: 213–229.

    CAS  PubMed  Google Scholar 

  17. McDonald C, Inohara N, Nunez G . Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 2005; 280: 20177–20180.

    CAS  PubMed  Google Scholar 

  18. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE . The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 2007; 29: 289–301.

    CAS  PubMed  Google Scholar 

  19. Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 2007; 8: 198–205.

    CAS  PubMed  Google Scholar 

  20. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    CAS  PubMed  Google Scholar 

  21. Case CL, Shin S, Roy CR . Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 2009; 77: 1981–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinon F, Burns K, Tschopp J . The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426.

    CAS  PubMed  Google Scholar 

  23. Miao EA, Andersen-Nissen E, Warren SE, Aderem A . TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007; 29: 275–288.

    CAS  PubMed  Google Scholar 

  24. Shaw PJ, Lamkanfi M, Kanneganti TD . NOD-like receptor (NLR) signaling beyond the inflammasome. Eur J Immunol 2010; 40: 624–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE . Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2006; 2: e18.

    PubMed  PubMed Central  Google Scholar 

  26. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 2006; 7: 318–325.

    CAS  PubMed  Google Scholar 

  27. Hsu LC, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE et al. A NOD2–NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 2008; 105: 7803–7808.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferwerda G, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW et al. Engagement of NOD2 has a dual effect on proIL-1beta mRNA transcription and secretion of bioactive IL-1beta. Eur J Immunol 2008; 38: 184–191.

    CAS  PubMed  Google Scholar 

  29. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 2001; 276: 28309–28313.

    CAS  PubMed  Google Scholar 

  30. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross J et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008; 452: 103–107.

    CAS  PubMed  Google Scholar 

  31. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schroder K, Muruve DA, Tschopp J . Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr Biol 2009; 19: R262–R265.

    CAS  PubMed  Google Scholar 

  33. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430: 213–218.

    CAS  PubMed  Google Scholar 

  34. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S et al. Syk kinase signalling couples to the NLRP3 inflammasome for anti-fungal host defence. Nature 2009; 459: 433–436.

    CAS  PubMed  Google Scholar 

  35. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 2006; 281: 36560–36568.

    CAS  PubMed  Google Scholar 

  36. Pan Q, Mathison J, Fearns C, Kravchenko VV, Da Silva Correia J, Hoffman HM et al. MDP-induced interleukin-1beta processing requires NOD2 and CIAS1/NALP3. J Leukoc Biol 2007; 82: 177–183.

    CAS  PubMed  Google Scholar 

  37. Martinon F, Agostini L, Meylan E, Tschopp J . Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 2004; 14: 1929–1934.

    CAS  PubMed  Google Scholar 

  38. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9: 1171–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228–232.

    CAS  PubMed  Google Scholar 

  40. Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 2009; 4: e7446.

    PubMed  PubMed Central  Google Scholar 

  41. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG . Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006; 126: 1135–1145.

    CAS  PubMed  Google Scholar 

  42. Ozoren N, Masumoto J, Franchi L, Kanneganti TD, Body-Malapel M, Erturk I et al. Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 2006; 176: 4337–4342.

    PubMed  Google Scholar 

  43. Boyden ED, Dietrich WF . Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 2006; 38: 240–244.

    CAS  PubMed  Google Scholar 

  44. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J . Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237–241.

    CAS  PubMed  Google Scholar 

  45. Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA . Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008; 453: 1122–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dostert C, PÊtrilli V, van Bruggen R, Steele C, Mossman BT, Tschopp J . Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320: 674–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 2008; 105: 9035–9040.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mayor A, Martinon F, de Smedt T, Petrilli V, Tschopp J . A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 2007; 8: 497–503.

    CAS  PubMed  Google Scholar 

  49. Petrilli V, Papin S, Dostert C Mayor A, Martinon F, Tschopp J . Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14: 1583–1589.

    CAS  PubMed  Google Scholar 

  50. Kahlenberg JM, Dubyak GR . Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol 2004; 286: C1100–C1108.

    CAS  PubMed  Google Scholar 

  51. Laliberte RE, Eggler J, Gabel CA . ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J Biol Chem 1999; 274: 36944–36951.

    CAS  PubMed  Google Scholar 

  52. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 2007; 26: 433–443.

    CAS  PubMed  Google Scholar 

  53. Locovei S, Bao L, Dahl G . Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 2006; 103: 7655–7659.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius OM et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282: 2871–2879.

    CAS  PubMed  Google Scholar 

  55. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J . Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11: 136–140.

    CAS  PubMed  Google Scholar 

  56. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 2009; 5: e1000559.

    PubMed  Google Scholar 

  57. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rutault K, Alderman C, Chain BM, Katz DR . Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 1999; 26: 232–238.

    CAS  PubMed  Google Scholar 

  59. Dinarello CA . Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519–550.

    CAS  PubMed  Google Scholar 

  60. Hawkins PN, Lachmann HJ, McDermott MF . Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 2003; 348: 2583–2584.

    PubMed  Google Scholar 

  61. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006; 116: 2262–2271.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183: 787–791.

    CAS  PubMed  Google Scholar 

  63. Guarda G, Dostert C, Staehli F, Cabalzar K, Castillo R, Tardivel A et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 2009; 460: 269–273.

    CAS  PubMed  Google Scholar 

  64. Kool M, Petrilli V, de Smedt T, Rolaz A, Hammad H, van Nimwegen M et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 2008; 181: 3755–3759.

    CAS  PubMed  Google Scholar 

  65. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichten-Berger GS, Grant EP et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24: 317–327.

    CAS  PubMed  Google Scholar 

  66. Meylan E, Tschopp J, Karin M . Intracellular pattern recognition receptors in the host response. Nature 2006; 442: 39–44.

    CAS  PubMed  Google Scholar 

  67. Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 2001; 167: 6568–6575.

    CAS  PubMed  Google Scholar 

  68. Puren AJ, Fantuzzi G, Dinarello CA . Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 1999; 96: 2256–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gattorno M, Tassi S, Carta S, Delfino L, Ferlito F, Pelagatti MA et al. Pattern of interleukin-1beta secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum 2007; 56: 3138–3148.

    CAS  PubMed  Google Scholar 

  70. Shinkai K, McCalmont TH, Leslie KS . Cryopyrin-associated periodic syndromes and autoinflammation. Clin Exp Dermatol 2008; 33: 1–9.

    CAS  PubMed  Google Scholar 

  71. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD . Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 2001; 29: 301–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 2002; 46: 2445–2452.

    CAS  PubMed  Google Scholar 

  73. Touitou I, Lesage S, McDermott M, Cuisset L, Hoffman H, Dode C et al. Infevers: an evolving mutation database for auto-inflammatory syndromes. Hum Mutat 2004; 24: 194–198.

    CAS  PubMed  Google Scholar 

  74. Masters SL, Simon A, Aksentijevich I, Kastner DL . Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27: 621–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Neven B, Callebaut I, Prieur AM, Feldmann J, Bodemer C, Lepore L et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 2004; 103: 2809–2815.

    CAS  PubMed  Google Scholar 

  76. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006; 355: 581–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Meng G, Zhang F, Fuss I, Kitani A, Strober W . A mutation in the NLRP3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 2009; 30: 860–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aksentijevich I, Remmers EF, Goldbach-Mansky R, Reiff A, Kastner DL . Mutational analysis in neonatal-onset multisystem inflammatory disease: comment on the articles by Frenkel et al and Saito et al. Arthritis Rheum 2006; 54: 2703–2704; author reply 2704–2705.

    PubMed  Google Scholar 

  79. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 2009; 30: 875–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fujisawa A, Kambe N, Saito M, Nishikomori R, Tanizaki H, Kanazawa N et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood 2007; 109: 2903–2911.

    CAS  PubMed  Google Scholar 

  81. Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H, Takeichi K et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 2008; 111: 2132–2141.

    CAS  PubMed  Google Scholar 

  82. Kambe N, Satoh T, Tanizaki H, Fujisawa A, Saito MK Nishikomori R . Enhanced NF-kappaB activation with an inflammasome activator correlates with activity of autoinflammatory disease associated with NLRP3 mutations outside of exon 3: comment on the article by Jeru et al. Arthritis Rheum 2010; 62: 3123–3124; author reply 3124–3125 .

    PubMed  Google Scholar 

  83. Jeru I, Marlin S, Le Borgne G, Cochet E, Normand S, Duquesnoy P et al. Functional consequences of a germline mutation in the leucine-rich repeat domain of NLRP3 identified in an atypical autoinflammatory disorder. Arthritis Rheum 2010; 62: 1176–1185.

    CAS  PubMed  Google Scholar 

  84. Arostegui JI, Lopez Saldaña MD, Pascal M, Clemente D, Aymerich M, Balaguer F et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum 2010; 62: 1158–1166.

    CAS  PubMed  Google Scholar 

  85. Villani AC, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat Genet 2009; 41: 71–76.

    CAS  PubMed  Google Scholar 

  86. Cummings JR, Cooney RM Clarke G, Beckly J, Geremia A, Pathan S, et al. The genetics of NOD-like receptors in Crohn's disease. Tissue Antigens 2010; 76: 48–56.

    CAS  PubMed  Google Scholar 

  87. Schoultz I, Verma D, Halfvarsson J, Torkvist L, Fredrikson M, Sjöqvist U et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn's disease in Swedish men. Am J Gastroenterol 2009; 104: 1180–1188.

    CAS  PubMed  Google Scholar 

  88. Lewis GJ, Massey DC Zhang H Bredin F Tremelling M Lee JC, et al. Genetic association between NLRP3 variants and Crohn's disease does not replicate in a large UK panel. Inflamm Bowel Dis 2010 Oct 25. [Epub ahead of print] DOI: 10.1002/ibd.21499.

    PubMed  Google Scholar 

  89. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 2002; 46: 3340–3348.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jeru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA 2008; 105: 1614–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 2007; 178: 1256–1260.

    CAS  PubMed  Google Scholar 

  92. Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W et al. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin–pyrin-mediated effector domain signaling in innate immunity. J Biol Chem 2010; 285: 27402–27410.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T . PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J Biol Chem 2005; 280: 21720–21725.

    CAS  PubMed  Google Scholar 

  94. Deveault C, Qian JH, Chebaro W, Ao A, Gilbert L, Mehio A . NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation. Hum Mol Genet 2009; 18: 888–897.

    CAS  PubMed  Google Scholar 

  95. Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 2007; 28: 214–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003; 11: 591–604.

    CAS  PubMed  Google Scholar 

  97. Jeru I, Hayrapetyan H, Duquesnoy P, Sarkisian T, Amselem S . PYPAF1 nonsense mutation in a patient with an unusual autoinflammatory syndrome: role of PYPAF1 in inflammation. Arthritis Rheum 2006; 54: 508–514.

    CAS  PubMed  Google Scholar 

  98. Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008; 3: 224–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pontillo A, Brandao LA, Guimaraes RL, Segat L, Athanasakis E, Crovella S . A 3'UTR SNP in NLRP3 gene is associated with susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr 2010; 54: 236–240.

    CAS  PubMed  Google Scholar 

  100. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009; 30: 556–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A . Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 2009; 206: 79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Thomas PG, Dash P, Aldridge JR, Jr, Ellebedy AH, Reynolds C, Funk AJ et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009; 30: 566–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS . Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 2009; 200: 303–306.

    PubMed  Google Scholar 

  104. Witkin SS, Bierhals K, Linhares I, Normand N, Dieterle S, Neuer A . Genetic polymorphism in an inflammasome component, cervical mycoplasma detection and female infertility in women undergoing in vitro fertilization. J Reprod Immunol 2010; 84: 171–175.

    CAS  PubMed  Google Scholar 

  105. Wang W, Stassen FR, Surcel HMÖ hman H, Tiitinen A, Paavonen J et al. Analyses of polymorphisms in the inflammasome-associated NLRP3 and miRNA-146A genes in the susceptibility to and tubal pathology of Chlamydia trachomatis infection. Drugs Today (Barc) 2009; 45 Suppl B: 95–103.

    Google Scholar 

  106. McGonagle D, McDermott MF . A proposed classification of the immunological diseases. PLoS Med 2006; 3: e297.

    PubMed  PubMed Central  Google Scholar 

  107. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC . A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203: 1685–1691.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 2009; 30: 576–587.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F . Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8: 942–949.

    CAS  PubMed  Google Scholar 

  110. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007; 27: 660–669.

    CAS  PubMed  Google Scholar 

  111. Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR . Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum 2008; 58: 875–887.

    PubMed  PubMed Central  Google Scholar 

  112. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172: 146–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pernis AB . Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J Intern Med 2009; 265: 644–652.

    CAS  PubMed  Google Scholar 

  114. Lubberts E . Th17 cytokines and arthritis. Semin Immunopathol 2010; 32: 43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. van den Berg WB, Miossec P . IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 549–553.

    CAS  PubMed  Google Scholar 

  116. Evans HG, Gullick NJ, Kelly S, Pitzalis C, Lord GM, Kirkham BW et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci USA 2009; 106: 6232–6237.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Day TG, Ramanan AV, Hinks A, Lamb R, Packham J, Wise C et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis. Arthritis Rheum 2008; 58: 2142–2146.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Agarwal S, Misra R, Aggarwal A . Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J Rheumatol 2008; 35: 515–519.

    CAS  PubMed  Google Scholar 

  119. Rosengren S, Hoffman HM, Bugbee W, Boyle DL . Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis 2005; 64: 708–714.

    CAS  PubMed  Google Scholar 

  120. Kastbom A, Verma D, Eriksson P, Skogh T, Wingren G, Soderkvist P . Genetic variation in proteins of the cryopyrin inflammasome influences susceptibility and severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology (Oxford) 2008; 47: 415–417.

    CAS  Google Scholar 

  121. Hoffman HM, Gregory SG, Mueller JL, Tresierras M, Broide DH, Kolodner RD . Fine structure mapping of CIAS1: identification of an ancestral haplotype and a common FCAS mutation, L353P. Hum Genet 2003; 112: 209–216.

    CAS  PubMed  Google Scholar 

  122. McGovern DP, Butler H, Ahmad T, Paolucci M, van Heel DA, Negoro K et al. TUCAN (CARD8) genetic variants and inflammatory bowel disease. Gastroenterology 2006; 131: 1190–1196.

    CAS  PubMed  Google Scholar 

  123. Hitomi Y, Ebisawa M, Tomikawa M, Imai T, Komata T, Hirota T et al. Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma. J Allergy Clin Immunol 2009; 124: 779–785.

    CAS  PubMed  Google Scholar 

  124. Kambe N, Nakamura Y, Saito M, Nishikomori R . The inflammasome, an innate immunity guardian, participates in skin urticarial reactions and contact hypersensitivity. Allergol Int 2010; 59: 105–113.

    CAS  PubMed  Google Scholar 

  125. Nakamura Y, Kambe N, Saito M, Nishikomori R, Kim YG, Murakami M et al. Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 2009; 206: 1037–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356: 1216–1225.

    CAS  PubMed  Google Scholar 

  127. Jin Y, Birlea SA, Fain PR, Spritz RA . Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 2007; 127: 2558–2562.

    CAS  PubMed  Google Scholar 

  128. Magitta NF, Boe Wolff AS, Johansson S, Skinningsrud B, Lie BA, Myhr KM et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun 2009; 10: 120–124.

    CAS  PubMed  Google Scholar 

  129. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Google Scholar 

  130. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–864.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Omi T, Kumada M, Kamesaki T, Okuda H, Munkhtulga L, Yanagisawa Y et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006; 14: 1295–1305.

    CAS  PubMed  Google Scholar 

  132. Rawat R, Cohen TV, Ampong B, Francia D, Henriques-Pons A, Hoffman EP et al. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol 2010; 176: 2891–2900.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 2010; 11: 897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsutsui H, Imamura M, Fujimoto J, Nakanishi K . The TLR4/TRIF-mediated activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in mice. Gastroenterol Res Pract 2010; 2010: 641865.

    PubMed  PubMed Central  Google Scholar 

  135. Gu LQ, Li FY, Zhao L, Liu Y, Chu Q, Zang XX et al. Association of XIAP and P2X7 receptor expression with lymph node metastasis in papillary thyroid carcinoma. Endocrine 2010; 38: 276–282.

    CAS  PubMed  Google Scholar 

  136. Ravaglia G, Paola F, Maioli F, Martelli M, Montesi F, Bastagli L et al. Interleukin-1beta and interleukin-6 gene polymorphisms as risk factors for AD: a prospective study. Exp Gerontol 2006; 41: 85–92.

    CAS  PubMed  Google Scholar 

  137. Forlenza OV, Diniz BS, Nunes PV, Memória CM, Yassuda MS, Gattaz WF et al. Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2009; 28: 507–512.

    CAS  PubMed  Google Scholar 

  138. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9: 857–865.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lucy Robinson for critically reviewing the manuscript. This work was supported by Agency for Science, Technology and Research (A*STAR) of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Mortellaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conforti-Andreoni, C., Ricciardi-Castagnoli, P. & Mortellaro, A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol 8, 135–145 (2011). https://doi.org/10.1038/cmi.2010.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.81

Keywords

This article is cited by

Search

Quick links