Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

TNFR2 expression on non-bone marrow-derived cells is crucial for lipopolysaccharide-induced septic shock and downregulation of soluble TNFR2 level in serum

Abstract

Persistently high serum levels of soluble tumor-necrosis factor (TNF) receptor 2 (sTNFR2) have been observed in septic shock and many inflammatory diseases. However, its origin and regulation during these pathological processes are still largely unknown. In this study, murine bone marrow (BM) chimeras selectively expressing TNFR2 on either BM-derived or non-BM-derived cells were generated and challenged with lipopolysaccharide (LPS). The results show that TNFR2 expression on non-BM-derived cells is crucial for both the sensitivity of mice to LPS and the downregulation of sTNFR2 in serum. Most importantly, sTNFR2 was released from both BM- and non-BM-derived cells. Non-BM TNFR1 expression influenced the sensitivity of mice to LPS challenge but not the level of serum sTNFR2. These results provide the first in vivo evidence for the origin and regulation of sTNFR2 in serum and could aid in the development of novel anti-TNF strategies against septic shock.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z . Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res 2007; 67: 4443–4450.

    Article  CAS  PubMed  Google Scholar 

  2. Qin Z, van Tits LJ, Buurman WA, Blankenstein T . Human lymphotoxin has at least equal antitumor activity in comparison to human tumor necrosis factor but is less toxic in mice. Blood 1995; 85: 2779–2785.

    CAS  PubMed  Google Scholar 

  3. Qin Z, Kruger-Krasagakes S, Kunzendorf U, Hock H, Diamantstein T, Blankenstein T . Expression of tumor necrosis factor by different tumor cell lines results either in tumor suppression or augmented metastasis. J Exp Med 1993; 178: 355–360.

    Article  CAS  PubMed  Google Scholar 

  4. Balkwill F . Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9: 361–371.

    Article  CAS  PubMed  Google Scholar 

  5. Lundberg P, Welander PV, Edwards CK, van Rooijen N, Cantin E . Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 2007; 81: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  6. Olleros ML, Vesin D, Fotio AL, Santiago-Raber ML, Tauzin S, Szymkowski DE et al. Soluble TNF, but not membrane TNF, is critical in LPS-induced hepatitis. J Hepatol 2010; 53: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  7. Dranoff G . Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4: 11–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kuprash DV, Qin Z, Ito D, Grivennikov SI, Abe K, Drutskaya LN et al. Ablation of TNF or lymphotoxin signaling and the frequency of spontaneous tumors in p53-deficient mice. Cancer Lett 2008; 268: 70–75.

    Article  CAS  PubMed  Google Scholar 

  9. Lesslauer W, Tabuchi H, Gentz R, Brockhaus M, Schlaeger EJ, Grau G et al. Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality. Eur J Immunol 1991; 21: 2883–2886.

    Article  CAS  PubMed  Google Scholar 

  10. Shealy D, Visvanathan S . Anti-TNF antibodies: lessons from the past, roadmap for the future. Handb Exp Pharmacol 2008; 181: 101–129.

    Article  CAS  Google Scholar 

  11. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP . Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331–367.

    Article  CAS  PubMed  Google Scholar 

  12. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE . TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turner SJ, La Gruta NL, Stambas J, Diaz G, Doherty PC . Differential tumor necrosis factor receptor 2-mediated editing of virus-specific CD8+ effector T cells. Proc Natl Acad Sci USA 2004; 101: 3545–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim EY, Teh HS . Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J Immunol 2004; 173: 4500–4509.

    Article  CAS  PubMed  Google Scholar 

  15. Yu Y, Liu S, Wang W, Song W, Zhang M, Zhang W et al. Involvement of tumour necrosis factor-alpha-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells. Immunology 2002; 106: 308–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Lamki RS, Brookes AP, Wang J, Reid MJ, Parameshwar J, Goddard MJ et al. TNF receptors differentially signal and are differentially expressed and regulated in the human heart. Am J Transplant 2009; 9: 2679–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theiss AL, Simmons JG, Jobin C, Lund PK . Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem 2005; 280: 36099–36109.

    Article  CAS  PubMed  Google Scholar 

  18. Porteu F, Nathan C . Shedding of tumor necrosis factor receptors by activated human neutrophils. J Exp Med 1990; 172: 599–607.

    Article  CAS  PubMed  Google Scholar 

  19. Thevenon AD, Zhou JA, Megnekou R, Ako S, Leke RG, Taylor DW . Elevated levels of soluble TNF receptors 1 and 2 correlate with plasmodium falciparum parasitemia in pregnant women: potential markers for malaria-associated inflammation. J Immunol 2010; 185: 7115–7122.

    Article  CAS  PubMed  Google Scholar 

  20. Moura AS, Carmo RA, Teixeira AL, Leite VH, Rocha MO . Soluble inflammatory markers as predictors of liver histological changes in patients with chronic hepatitis C virus infection. Eur J Clin Microbiol Infect Dis 2010; 29: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  21. Lien E, Liabakk NB, Johnsen AC, Nonstad U, Sundan A, Espevik T . Polymorphonuclear granulocytes enhance lipopolysaccharide-induced soluble p75 tumor necrosis factor receptor release from mononuclear cells. Eur J Immunol 1995; 25: 2714–2717.

    Article  CAS  PubMed  Google Scholar 

  22. Dickensheets HL, Freeman SL, Smith MF, Donnelly RP . Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes. Blood 1997; 90: 4162–4171.

    CAS  PubMed  Google Scholar 

  23. An H, Yu Y, Zhang M, Xu H, Qi R, Yan X et al. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 2002; 106: 38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. An H, Xu H, Yu Y, Zhang M, Qi R, Yan X et al. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 2002; 81: 165–169.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang W, Sun R, Wei H, Tian Z . Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci USA 2005; 102: 17077–17082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG . Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 1998; 161: 2636–2641.

    CAS  PubMed  Google Scholar 

  27. Aderka D . The potential biological and clinical significance of the soluble tumor necrosis factor receptors. Cytokine Growth Factor Rev 1996; 7: 231–240.

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Pradera F, Kammertoens T, Li B, Liu S, Qin Z . Cross-talk between T cells and innate immune cells is crucial for IFN-gamma-dependent tumor rejection. J Immunol 2007; 179: 1568–1576.

    Article  CAS  PubMed  Google Scholar 

  29. Hartwell DW, Mayadas TN, Berger G, Frenette PS, Rayburn H, Hynes RO et al. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J Cell Biol 1998; 143: 1129–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu Y, Yang W, Qin C, Zhang L, Deng J, Liu S et al. Responsiveness of stromal fibroblasts to IFN-gamma blocks tumor growth via angiostasis. J Immunol 2009; 183: 6413–6421.

    Article  CAS  PubMed  Google Scholar 

  31. Qin Z, Blankenstein T . CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12: 677–686.

    Article  CAS  PubMed  Google Scholar 

  32. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H et al. A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 2003; 63: 4095–4100.

    CAS  PubMed  Google Scholar 

  33. Erickson SL, de Sauvage FJ, Kikly K, Carver-Moore K, Pitts-Meek S, Gillett N et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 1994; 372: 560–563.

    Article  CAS  PubMed  Google Scholar 

  34. Patel N, Zhu J, Tachado S, Zhang J, Wan Z, Saukkonen J et al. HIV impairs TNF-alpha mediated macrophage apoptotic response to Mycobacterium tuberculosis. J Immunol 2007; 179: 6973.

    Article  CAS  PubMed  Google Scholar 

  35. Binck BW, Tsen MF, Islas M, White DJ, Schultz RA, Willis MS et al. Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock. Am J Physiol Heart Circ Physiol 2005; 288: H577–H583.

    Article  CAS  PubMed  Google Scholar 

  36. Barash J, Dushnitzki D, Barak Y, Miron S, Hahn T . Tumor necrosis factor (TNF)alpha and its soluble receptor (sTNFR) p75 during acute human parvovirus B19 infection in children. Immunol Lett 2003; 88: 109–112.

    Article  CAS  PubMed  Google Scholar 

  37. Carpentier I, Coornaert B, Beyaert R . Function and regulation of tumor necrosis factor type 2. Curr Med Chem 2004; 11: 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  38. Leeuwenberg JF, Jeunhomme TM, Buurman WA . Slow release of soluble TNF receptors by monocytes in vitro. J Immunol 1994; 152: 4036–4043.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81030049 and 30700287).

Author information

Authors and Affiliations

Authors

Additional information

Note: Supplementary information is available on the Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Rong, L., Deng, J. et al. TNFR2 expression on non-bone marrow-derived cells is crucial for lipopolysaccharide-induced septic shock and downregulation of soluble TNFR2 level in serum. Cell Mol Immunol 8, 164–171 (2011). https://doi.org/10.1038/cmi.2010.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.79

Keywords

Search

Quick links