Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases

Abstract

Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI . Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915–1920.

    Article  PubMed  Google Scholar 

  2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doré J, Leclerc M, Juste C, Lepage P, Blottière H, Corthier G . The human intestinal microbiota: from phylogenetics to functional metagenomics. In: Heidt PJ, Snel J, Midtvedt T, Rusch V, (eds.) Intestinal Microbiomics: Novel Indicators of Health and Disease. Herborn: Old Herborn University Foundation, 2010: 15–22.

    Google Scholar 

  5. Martin FP, Sprenger N, Yap IK, Wang Y, Bibiloni R, Rochat F et al. Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 2009; 8: 2090–2105.

    Article  CAS  PubMed  Google Scholar 

  6. Kleerebezem M . Metagenomic approaches to unravel the composition and function of the human intestinal microbiota. In: Heidt PJ, Snel J, Midtvedt T, Rusch V (eds.) Intestinal Microbiomics: Novel Indicators of Health and Disease. Herborn: Old Herborn University Foundation, 2010: 27–39.

    Google Scholar 

  7. Falk PG, Hooper LV, Midtvedt T, Gordon JI . Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hooper LV, Falk PG, Gordon JI . Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol 2000; 3: 79–85.

    Article  CAS  PubMed  Google Scholar 

  9. Mestecky J, Russel MW, Jackson S, Michalek SM, Tlaskalova-Hogenova H, Sterzl J (eds.) Advances in Mucosal Immunology. New York/London: Plenum Press, 1995.

    Google Scholar 

  10. Tlaskalova-Hogenova H, Tuckova L, Lodinova-Zadnikova R, Stepankova R, Cukrowska B, Funda DP et al. Mucosal immunity: its role in defense and allergy. Int Arch Allergy Immunol 2002; 128: 77–89.

    Article  CAS  PubMed  Google Scholar 

  11. Mestecky J, Bienenstock J, Lamm ME, McGhee J, Strober W, Mayer L (eds.) Mucosal Immunology. 3rd ed. Amsterdam: Elsevier–Academic Press, 2005.

  12. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010; 8: 292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill DA, Artis D . Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 2010; 28: 623–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung H, Kasper DL . Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 2010; 22: 455–460.

    Article  CAS  PubMed  Google Scholar 

  15. Russell MW, Ogra PL . Mucosal decisions: tolerance and responsiveness at mucosal surfaces. Immunol Invest 2010; 39: 297–302.

    Article  PubMed  Google Scholar 

  16. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2004; 93: 97–108.

    Article  CAS  PubMed  Google Scholar 

  17. Turner JR . Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9: 799–809.

    Article  CAS  PubMed  Google Scholar 

  18. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA . Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1: 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fasano A . Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am J Pathol 2008; 173: 1243–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bienenstock J, Collins S . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: psycho-neuroimmunology and the intestinal microbiota: clinical observations and basic mechanisms. Clin Exp Immunol 2010; 160: 85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Medzhitov R, Janeway C Jr . Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173: 89–97.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 2002; 416: 194–199.

    Article  CAS  PubMed  Google Scholar 

  23. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 2004; 5: 104–112.

    Article  CAS  PubMed  Google Scholar 

  24. Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009; 106: 15813–15818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rescigno M, Di Sabatino A . Dendritic cells in intestinal homeostasis and disease. J Clin Invest 2009; 119: 2441–2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coombes JL, Powrie F . Dendritic cells in intestinal immune regulation. Nat Rev Immunol 2008; 8: 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barnes MJ, Powrie F . Regulatory T cells reinforce intestinal homeostasis. Immunity 2009; 31: 401–411.

    Article  CAS  PubMed  Google Scholar 

  28. Mestecky J, Russell MW, Elson CO . Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 1999; 44: 2–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmgren J, Czerkinsky C . Mucosal immunity and vaccines. Nat Med 2005; 11: S45–S53.

    Article  CAS  PubMed  Google Scholar 

  30. Brandtzaeg P . Update on mucosal immunoglobulin A in gastrointestinal disease. Curr Opin Gastroenterol 2010; 26: 554–563.

    Article  CAS  PubMed  Google Scholar 

  31. Ogra PL . Developmental aspects of the mucosal immune system: role of external environment, mucosal microflora and milk. Adv Exp Med Biol 2009; 639: 41–56.

    Article  CAS  PubMed  Google Scholar 

  32. Hanson LA, Silfverdal SA . The mother's immune system is a balanced threat to the foetus, turning to protection of the neonate. Acta Paediatr 2009; 98: 221–228.

    Article  PubMed  Google Scholar 

  33. Kverka M, Burianova J, Lodinova-Zadnikova R, Kocourkova I, Cinova J, Tuckova L et al. Cytokine profiling in human colostrum and milk by protein array. Clin Chem 2007; 53: 955–962.

    Article  CAS  PubMed  Google Scholar 

  34. Adlerberth I, Wold AE . Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98: 229–238.

    Article  CAS  PubMed  Google Scholar 

  35. Tlaskalova-Hogenova H, Cerna J, Mandel L . Peroral immunization of germfree piglets: appearance of antibody-forming cells and antibodies of different isotypes. Scand J Immunol 1981; 13: 467–472.

    Article  CAS  PubMed  Google Scholar 

  36. Cebra JJ . Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999; 69: 1046S–1051S.

    Article  CAS  PubMed  Google Scholar 

  37. Cebra JJ, Jiang HQ, Boiko N, Tlaskalová-Hogenová H . The role of mucosal microbiota in the development, maintenance, and pathologies of the mucosal immune system. In: Mestecky J, Bienenstock J, Lamm ME, McGhee J, Strober W, Mayer L (eds.) Mucosal Immunology. 3rd ed Amsterdam: Elsevier–Academic Press, 2005: 335–368.

    Chapter  Google Scholar 

  38. Sterzl J, Silverstein AM . Developmental aspects of immunity. Adv Immunol 1967; 6: 337–459.

    Article  CAS  PubMed  Google Scholar 

  39. Tlaskalova H, Kamarytova V, Mandel L, Prokesova L, Kruml J, Lanc A et al. The immune response of germ-free piglets after peroral monocontamination with living Escherichia coli strain 086. I. The fate of antigen, dynamics and site of antibody formation, nature of antibodies and formation of heterohaemagglutinins. Folia Biol (Praha) 1970; 16: 177–187.

    CAS  Google Scholar 

  40. Tlaskalova-Hogenova H, Sterzl J, Stepankova R, Dlabac V, Veticka V, Rossmann P et al. Development of immunological capacity under germfree and conventional conditions. Ann NY Acad Sci 1983; 409: 96–113.

    Article  CAS  PubMed  Google Scholar 

  41. Mandel L, Travnicek J . The minipig as a model in gnotobiology. Nahrung 1987; 31: 613–618.

    Article  CAS  PubMed  Google Scholar 

  42. Tlaskalová-Hogenová H . Gnotobiology as a tool—an introduction. In: Lefkovits I (ed.) Immunology Methods Manual: The Comprehensive Sourcebook of Techniques. London: Academic Press Ltd, 1997: 1524–1529.

    Google Scholar 

  43. Stepankova R, Sinkora J, Hudcovic T, Kozakova H, Tlaskalova-Hogenova H . Differences in development of lymphocyte subpopulations from gut-associated lymphatic tissue (GALT) of germfree and conventional rats: effect of aging. Folia Microbiol (Praha) 1998; 43: 531–534.

    Article  CAS  Google Scholar 

  44. Sinkora M, Butler JE . The ontogeny of the porcine immune system. Dev Comp Immunol 2009; 33: 273–283.

    Article  CAS  PubMed  Google Scholar 

  45. Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H . Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol 2008; 9: 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Williams AM, Probert CS, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland PW . Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse. Immunology 2006; 119: 470–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Probert CS, Williams AM, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland PW . The effect of weaning on the clonality of alpha beta T-cell receptor T cells in the intestine of GF and SPF mice. Dev Comp Immunol 2007; 31: 606–617.

    Article  CAS  PubMed  Google Scholar 

  48. Kozakova H, Rehakova Z, Kolinska J . Bifidobacterium bifidum monoassociation of gnotobiotic mice: effect on enterocyte brush-border enzymes. Folia Microbiol (Praha) 2001; 46: 573–576.

    Article  CAS  Google Scholar 

  49. Umesaki Y, Tohyama K, Mutai M . Biosynthesis of microvillus membrane-associated glycoproteins of small intestinal epithelial cells in germ-free and conventionalized mice. J Biochem 1982; 92: 373–379.

    Article  CAS  PubMed  Google Scholar 

  50. Bry L, Falk PG, Midtvedt T, Gordon JI . A model of host-microbial interactions in an open mammalian ecosystem. Science 1996; 273: 1380–1383.

    Article  CAS  PubMed  Google Scholar 

  51. Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347: 911–920.

    Article  PubMed  Google Scholar 

  52. Backhed F . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: the normal gut microbiota in health and disease. Clin Exp Immunol 2010; 160: 80–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ehlers S, Kaufmann SH . 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: lifestyle changes affecting the host-environment interface. Clin Exp Immunol 2010; 160: 10–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Selmi C, Gershwin ME . The role of environmental factors in primary biliary cirrhosis. Trends Immunol 2009; 30: 415–420.

    Article  CAS  PubMed  Google Scholar 

  55. Youinou P, Pers JO, Gershwin ME, Shoenfeld Y . Geo-epidemiology and autoimmunity. J Autoimmun 2010; 34: J163–J167.

    Article  CAS  PubMed  Google Scholar 

  56. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 2005; 54: 1232–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shoenfeld Y, Blank M, Abu-Shakra M, Amital H, Barzilai O, Berkun Y et al. The mosaic of autoimmunity: prediction, autoantibodies, and therapy in autoimmune diseases—2008. Isr Med Assoc J 2008; 10: 13–19.

    PubMed  Google Scholar 

  58. Westall FC . Molecular mimicry revisited: gut bacteria and multiple sclerosis. J Clin Microbiol 2006; 44: 2099–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blank M, Barzilai O, Shoenfeld Y . Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol 2007; 32: 111–118.

    Article  PubMed  Google Scholar 

  60. van Eden W, Wick G, Albani S, Cohen I . Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann NY Acad Sci 2007; 1113: 217–237.

    Article  CAS  PubMed  Google Scholar 

  61. Zhernakova A, van Diemen CC, Wijmenga C . Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 2009; 10: 43–55.

    Article  CAS  PubMed  Google Scholar 

  62. Hawkins RD, Hon GC, Ren B . Next-generation genomics: an integrative approach. Nat Rev Genet 2010; 11: 476–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tlaskalova-Hogenova H, Stepankova R, Tuckova L, Farre MA, Funda DP, Verdu EF et al. Autoimmunity, immunodeficiency and mucosal infections: chronic intestinal inflammation as a sensitive indicator of immunoregulatory defects in response to normal luminal microflora. Folia Microbiol (Praha) 1998; 43: 545–550.

    Article  CAS  Google Scholar 

  64. Abt MC, Artis D . The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 2009; 25: 496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sekirov I, Russell SL, Antunes LC, Finlay BB . Gut microbiota in health and disease. Physiol Rev 2010; 90: 859–904.

    Article  CAS  PubMed  Google Scholar 

  66. Singh B, Read S, Asseman C, Malmstrom V, Mottet C, Stephens LA et al. Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001; 182: 190–200.

    Article  CAS  PubMed  Google Scholar 

  67. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006; 25: 309–318.

    Article  CAS  PubMed  Google Scholar 

  68. Clavel T, Haller D . Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Curr Issues Intest Microbiol 2007; 8: 25–43.

    CAS  PubMed  Google Scholar 

  69. Xavier RJ, Podolsky DK . Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427–434.

    Article  CAS  PubMed  Google Scholar 

  70. Blumberg RS . Inflammation in the intestinal tract: pathogenesis and treatment. Dig Dis 2009; 27: 455–464.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bengmark S . Bioecological control of inflammatory bowel disease. Clin Nutr 2007; 26: 169–181.

    Article  PubMed  Google Scholar 

  72. Mathew CG . New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet 2008; 9: 9–14.

    Article  CAS  PubMed  Google Scholar 

  73. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT . Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev 2005; 206: 260–276.

    Article  PubMed  Google Scholar 

  74. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998; 66: 5224–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dieleman LA, Hoentjen F, Qian BF, Sprengers D, Tjwa E, Torres MF et al. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol 2004; 136: 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hudcovic T, Stepankova R, Cebra J, Tlaskalova-Hogenova H . The role of microflora in the development of intestinal inflammation: acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol (Praha) 2001; 46: 565–572.

    Article  CAS  Google Scholar 

  77. Stepankova R, Powrie F, Kofronova O, Kozakova H, Hudcovic T, Hrncir T et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm Bowel Dis 2007; 13: 1202–1211.

    Article  PubMed  Google Scholar 

  78. Verdu EF, Bercik P, Cukrowska B, Farre-Castany MA, Bouzourene H, Saraga E et al. Oral administration of antigens from intestinal flora anaerobic bacteria reduces the severity of experimental acute colitis in BALB/c mice. Clin Exp Immunol 2000; 120: 46–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 2010; 163: 250–259.

    Article  PubMed  CAS  Google Scholar 

  80. Kucera P, Novakova D, Behanova M, Novak J, Tlaskalova-Hogenova H, Andel M . Gliadin, endomysial and thyroid antibodies in patients with latent autoimmune diabetes of adults (LADA). Clin Exp Immunol 2003; 133: 139–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fasano A, Shea-Donohue T . Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2005; 2: 416–422.

    Article  CAS  PubMed  Google Scholar 

  82. Wapenaar MC, Monsuur AJ, van Bodegraven AA, Weersma RK, Bevova MR, Linskens RK et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 2008; 57: 463–467.

    Article  CAS  PubMed  Google Scholar 

  83. Visser J, Rozing J, Sapone A, Lammers K, Fasano A . Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 59–63.

    Article  CAS  Google Scholar 

  84. Plot L, Amital H . Infectious associations of Celiac disease. Autoimmun Rev 2009; 8: 316–319.

    Article  CAS  PubMed  Google Scholar 

  85. Ou G, Hedberg M, Horstedt P, Baranov V, Forsberg G, Drobni M et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol 2009; 104: 3058–3067.

    Article  PubMed  Google Scholar 

  86. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y . Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 2009; 62: 264–269.

    Article  CAS  PubMed  Google Scholar 

  87. de Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y . Pivotal advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol 2010; 87: 765–778.

    Article  CAS  PubMed  Google Scholar 

  88. Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Jodl J, Fric P . Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol 1996; 31: 551–557.

    Article  CAS  PubMed  Google Scholar 

  89. Vaarala O . Leaking gut in type 1 diabetes. Curr Opin Gastroenterol 2008; 24: 701–706.

    Article  PubMed  Google Scholar 

  90. Pozzilli P, Signore A, Williams AJ, Beales PE . NOD mouse colonies around the world—recent facts and figures. Immunol Today 1993; 14: 193–196.

    Article  CAS  PubMed  Google Scholar 

  91. Funda D, Fundova P, Harrison L . Microflora-dependency of selected diabetes-preventive diets: germ-free and ex-germ-free monocolonized NOD mice as models for studying environmental factors in type 1 diabetes. 13th International Congress of Immunology, MS-11.4 16 (Brazilian Society for Immunology, Rio de Janeiro, 2007).

  92. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455: 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hoorfar J, Buschard K, Dagnaes-Hansen F . Prophylactic nutritional modification of the incidence of diabetes in autoimmune non-obese diabetic (NOD) mice. Br J Nutr 1993; 69: 597–607.

    Article  CAS  PubMed  Google Scholar 

  94. Funda DP, Kaas A, Bock T, Tlaskalova-Hogenova H, Buschard K . Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 1999; 15: 323–327.

    Article  CAS  PubMed  Google Scholar 

  95. Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K . Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 59–63.

    Article  CAS  PubMed  Google Scholar 

  96. Jelinkova L, Tuckova L, Cinova J, Flegelova Z, Tlaskalova-Hogenova H . Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett 2004; 571: 81–85.

    Article  CAS  PubMed  Google Scholar 

  97. Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006; 41: 408–419.

    Article  CAS  PubMed  Google Scholar 

  98. Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci USA 2005; 102: 2916–2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB . Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 1996; 41: 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  100. Pender MP . Preventing and curing multiple sclerosis by controlling Epstein–Barr virus infection. Autoimmun Rev 2009; 8: 563–568.

    Article  CAS  PubMed  Google Scholar 

  101. Schrijver IA, van Meurs M, Melief MJ, Wim Ang C, Buljevac D, Ravid R et al. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 2001; 124: 1544–1554.

    Article  CAS  PubMed  Google Scholar 

  102. Faria AM, Weiner HL . Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 2006; 13: 143–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009; 183: 6041–6050.

    Article  CAS  PubMed  Google Scholar 

  104. Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 2010; 3: 487–495.

    Article  CAS  PubMed  Google Scholar 

  105. Collins SM, Bercik P . The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009; 136: 2003–2014.

    Article  PubMed  Google Scholar 

  106. Gershon MD . The enteric nervous system: a second brain. Hosp Pract (Minneap) 1999; 34: 31–32, 35–38, 41–42 passim.

    Article  CAS  Google Scholar 

  107. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M et al. The second brain and Parkinson's disease. Eur J Neurosci 2009; 30: 735–741.

    Article  PubMed  Google Scholar 

  108. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 2010; 51: 418–424.

    Article  PubMed  Google Scholar 

  109. Theoharides TC, Doyle R . Autism, gut–blood–brain barrier, and mast cells. J Clin Psychopharmacol 2008; 28: 479–483.

    Article  PubMed  Google Scholar 

  110. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16: 444–453.

    Article  CAS  PubMed  Google Scholar 

  111. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK . Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 2010; 9: 2996–3004.

    Article  CAS  PubMed  Google Scholar 

  112. Maes M, Kubera M, Leunis JC . The gut–brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 2008; 29: 117–124.

    PubMed  Google Scholar 

  113. Nestler EJ, Hyman SE . Animal models of neuropsychiatric disorders. Nat Neurosci 2010; 13: 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Castany MA, Stepankova R, Tlaskalova H, Turner LF, Liu Z, Bures J . Study of behavior of rats with gluten-induced enteropathy. Int J Neurosci 1995; 83: 7–15.

    Article  CAS  PubMed  Google Scholar 

  115. Addolorato G, Di Giuda D, de Rossi G, Valenza V, Domenicali M, Caputo F et al. Regional cerebral hypoperfusion in patients with celiac disease. Am J Med 2004; 116: 312–317.

    Article  PubMed  Google Scholar 

  116. Weber P, Brune T, Ganser G, Zimmer KP . Gastrointestinal symptoms and permeability in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol 2003; 21: 657–662.

    CAS  PubMed  Google Scholar 

  117. Rodriguez-Reyna TS, Martinez-Reyes C, Yamamoto-Furusho JK . Rheumatic manifestations of inflammatory bowel disease. World J Gastroenterol 2009; 15: 5517–5524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toivanen P . Normal intestinal microbiota in the aetiopathogenesis of rheumatoid arthritis. Ann Rheum Dis 2003; 62: 807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ebringer A, Rashid T, Wilson C . Rheumatoid arthritis, proteus, anti-CCP antibodies and Karl Popper. Autoimmun Rev 2010; 9: 216–223.

    Article  CAS  PubMed  Google Scholar 

  120. Rashid T, Ebringer A . Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin Rheumatol 2007; 26: 858–864.

    Article  PubMed  Google Scholar 

  121. Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P . Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008; 35: 1500–1505.

    CAS  PubMed  Google Scholar 

  122. Rehakova Z, Capkova J, Stepankova R, Sinkora J, Louzecka A, Ivanyi P et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol 2000; 61: 555–558.

    Article  CAS  PubMed  Google Scholar 

  123. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180: 2359–2364.

    Article  CAS  PubMed  Google Scholar 

  124. Rovensky J, Stancikova M, Svik K, Uteseny J, Bauerova K, Jurcovicova J . Treatment of adjuvant-induced arthritis with the combination of methotrexate and probiotic bacteria Escherichia coli O83 (Colinfant). Folia Microbiol (Praha) 2009; 54: 359–363.

    Article  CAS  Google Scholar 

  125. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010; 32: 815–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Backhed F, Manchester JK, Semenkovich CF, Gordon JI . Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105: 16767–16772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ley RE . Obesity and the human microbiome. Curr Opin Gastroenterol 2010; 26: 5–11.

    Article  PubMed  Google Scholar 

  129. Ayada K, Yokota K, Kobayashi K, Shoenfeld Y, Matsuura E, Oguma K . Chronic infections and atherosclerosis. Clin Rev Allergy Immunol 2009; 37: 44–48.

    Article  PubMed  Google Scholar 

  130. Sandek A, Anker SD, von Haehling S . The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab 2009; 10: 22–28.

    Article  CAS  PubMed  Google Scholar 

  131. Wright SD, Burton C, Hernandez M, Hassing H, Montenegro J, Mundt S et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med 2000; 191: 1437–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 2010; 17: 796–804.

    Article  CAS  PubMed  Google Scholar 

  133. Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 2006; 3: 275–284.

    Article  CAS  PubMed  Google Scholar 

  134. Strachan DP . Hay fever, hygiene, and household size. BMJ 1989; 299: 1259–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. von Mutius E . Gene–environment interactions in asthma. J Allergy Clin Immunol 2009; 123: 3–11; quiz 2–3.

    Article  PubMed  Google Scholar 

  136. Adlerberth I, Strachan DP, Matricardi PM, Ahrne S, Orfei L, Aberg N et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 2007; 120: 343–350.

    Article  CAS  PubMed  Google Scholar 

  137. Lodinova-Zadnikova R, Cukrowska B, Tlaskalova-Hogenova H . Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol 2003; 131: 209–211.

    Article  PubMed  Google Scholar 

  138. Bjorksten B . Allergy prevention. Interventions during pregnancy and early infancy. Clin Rev Allergy Immunol 2004; 26: 129–138.

    Article  PubMed  Google Scholar 

  139. Isolauri E, Salminen S . Probiotics: use in allergic disorders: a Nutrition, Allergy, Mucosal Immunology, and Intestinal Microbiota (NAMI) Research Group Report. J Clin Gastroenterol 2008; 42( Suppl 2) S91–S96.

    Article  PubMed  Google Scholar 

  140. Lonnqvist A, Ostman S, Almqvist N, Hultkrantz S, Telemo E, Wold AE et al. Neonatal exposure to staphylococcal superantigen improves induction of oral tolerance in a mouse model of airway allergy. Eur J Immunol 2009; 39: 447–456.

    Article  PubMed  CAS  Google Scholar 

  141. Repa A, Kozakova H, Hudcovic T, Stepankova R, Hrncir T, Tlaskalova-Hogenova H et al. Susceptibility to nasal and oral tolerance induction to the major birch pollen allergen Bet v 1 is not dependent on the presence of the microflora. Immunol Lett 2008; 117: 50–56.

    Article  CAS  PubMed  Google Scholar 

  142. de Martel C, Franceschi S . Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 2009; 70: 183–194.

    Article  PubMed  Google Scholar 

  143. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  144. Schottelius AJ, Dinter H . Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res 2006; 130: 67–87.

    Article  CAS  PubMed  Google Scholar 

  145. McConnell BB, Yang VW . The role of Inflammation in the pathogenesis of colorectal cancer. Curr Colorectal Cancer Rep 2009; 5: 69–74.

    Article  PubMed  PubMed Central  Google Scholar 

  146. O'Keefe SJ, Ou J, Aufreiter S, O'Connor D, Sharma S, Sepulveda J et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr 2009; 139: 2044–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vannucci L, Stepankova R, Grobarova V, Kozakova H, Rossmann P, Klimesova K et al. Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. J Immunotoxicol 2009; 6: 217–226.

    Article  PubMed  Google Scholar 

  148. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX et al. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol 2010; 10: 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Velentzis LS, Cantwell MM, Cardwell C, Keshtgar MR, Leathem AJ, Woodside JV . Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies. Br J Cancer 2009; 100: 1492–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chung KT, Stevens SE Jr, Cerniglia CE . The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 1992; 18: 175–190.

    Article  CAS  PubMed  Google Scholar 

  151. Babu SD, Jayanthi V, Devaraj N, Reis CA, Devaraj H . Expression profile of mucins (MUC2, MUC5AC and MUC6) in Helicobacter pylori infected pre-neoplastic and neoplastic human gastric epithelium. Mol Cancer 2006; 5: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Fukata M, Abreu MT . Role of Toll-like receptors in gastrointestinal malignancies. Oncogene 2008; 27: 234–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL . Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res 1975; 35: 287–290.

    CAS  PubMed  Google Scholar 

  154. Sacksteder MR . Occurrence of spontaneous tumors in the germfree F344 rat. J Natl Cancer Inst 1976; 57: 1371–1373.

    Article  CAS  PubMed  Google Scholar 

  155. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H . Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 2008; 32: 609–617.

    PubMed  Google Scholar 

  156. Oozeer R, Rescigno M, Ross RP, Knol J, Blaut M, Khlebnikov A et al. Gut health: predictive biomarkers for preventive medicine and development of functional foods. Br J Nutr 2010; 103: 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  157. Cukrowska B, LodInova-ZadnIkova R, Enders C, Sonnenborn U, Schulze J, Tlaskalova-Hogenova H . Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scand J Immunol 2002; 55: 204–209.

    Article  CAS  PubMed  Google Scholar 

  158. Bleich A, Sundberg JP, Smoczek A, von Wasielewski R, de Buhr MF, Janus LM et al. Sensitivity to Escherichia coli Nissle 1917 in mice is dependent on environment and genetic background. Int J Exp Pathol 2008; 89: 45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Preidis GA, Versalovic J . Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009; 136: 2015–2031.

    Article  CAS  PubMed  Google Scholar 

  160. Trebichavsky I, Rada V, Splichalova A, Splichal I . Cross-talk of human gut with bifidobacteria. Nutr Rev 2009; 67: 77–82.

    Article  PubMed  Google Scholar 

  161. Hormannsperger G, Haller D . Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol 2010; 300: 63–73.

    Article  PubMed  CAS  Google Scholar 

  162. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010; 298: G851–G859.

    Article  CAS  PubMed  Google Scholar 

  163. Wells JM, Rossi O, Meijerink M, van Baarlen P . Microbes and Health Sackler Colloquium: epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 2010; in press.

  164. Fric P . Probiotics in gastroenterology. Z Gastroenterol 2002; 40: 197–201. Czech.

    Article  CAS  PubMed  Google Scholar 

  165. Floch MH, Kim AS (eds.) Probiotics: A Clinical Guide. 1st ed. Thorofare: SLACK Inc, 2010.

  166. Kalliomaki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A . Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr 2010; 140: 713S–721S.

    Article  CAS  PubMed  Google Scholar 

  167. Matsuzaki T, Takagi A, Ikemura H, Matsuguchi T, Yokokura T . Intestinal microflora: probiotics and autoimmunity. J Nutr 2007; 137: 798S–802S.

    Article  CAS  PubMed  Google Scholar 

  168. Maassen CB, Claassen E . Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity. Vaccine 2008; 26: 2056–2057.

    Article  CAS  PubMed  Google Scholar 

  169. van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ et al. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci USA 2009; 106: 2371–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 2004; 56: 1–64.

    Article  PubMed  Google Scholar 

  171. Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B et al. Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 2010; in press.

Download references

Acknowledgements

This study was supported by grants from the Czech Science Foundation (nos. 303/08/0367, 303/09/0449, 310/07/014, 305/08/0535, 310/09/1640 and 310/08/H077), the Grant Agency of the Academy of Sciences of the Czech Republic (nos. IAA500200910, IAA500200710, KJB500200904, IAA500200917 and A500200709), the Ministry of Education, Youth and Sports of the Czech Republic (nos. 2B06053, 2B06155 and MSM 0021620812), the Ministry of Health of the Czech Republic (nos. NS/9775-4, NS/10054-3 and NS/10340-3), by EU Project Marie Curie CT 215553, EU Project IPODD consortium (202020) and the Institutional Research Concept AV0Z50200510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Tlaskalová-Hogenová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlaskalová-Hogenová, H., Štěpánková, R., Kozáková, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8, 110–120 (2011). https://doi.org/10.1038/cmi.2010.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.67

Keywords

This article is cited by

Search

Quick links