Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Contribution of functional KIR3DL1 to ankylosing spondylitis

Abstract

Increasing evidence points to a role for killer immunoglobulin-like receptors (KIRs) in the development of autoimmune diseases. In particular, a positive association of KIR3DS1 (activating receptor) and a negative association of KIR3DL1 (inhibitory receptor) alleles with ankylosing spondylitis (AS) have been reported by several groups. However, none of the studies analyzed these associations in the context of functionality of polymorphic KIR3DL1. To better understand how the KIR3DL1/3DS1 genes determine susceptibility to AS, we analyzed the frequencies of alleles and genotypes encoding functional (KIR3DL1*F) and non-functional (KIR3DL1*004) receptors. We genotyped 83 AS patients and 107 human leukocyte antigen (HLA)-B27-positive healthy controls from the Russian Caucasian population using a two-stage sequence-specific primer PCR, which distinguishes KIR3DS1, KIR3DL1*F and KIR3DL1*004 alleles. For the patients carrying two functional KIR3DL1 alleles, those alleles were additionally genotyped to identify KIR3DL1*005 and KIR3DL1*007 alleles, which are functional but are expressed at low levels. KIR3DL1 was negatively associated with AS at the expense of KIR3DL1*F but not of KIR3DL1*004. This finding indicates that the inhibitory KIR3DL1 receptor protects against the development of AS and is not simply a passive counterpart of the segregating KIR3DS1 allele encoding the activating receptor. However, analysis of genotype frequencies indicates that the presence of KIR3DS1 is a more important factor for AS susceptibility than the absence of KIR3DL1*F. The activation of either natural killer (NK) or T cells via the KIR3DS1 receptor can be one of the critical events in AS development, while the presence of the functional KIR3DL1 receptor has a protective effect. Nevertheless, even individuals with a genotype that carried two inhibitory KIR3DL1 alleles expressed at high levels could develop AS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Caffrey M, Brewerton DA, Hart FD, James DC . Human lymphocyte antigens as a possible diagnostic aid in ankylosing spondylitis. J Clin Pathol 1973; 26: 387.

    Article  CAS  Google Scholar 

  2. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD . Ankylosing spondylitis and HL-A 27. Lancet 1973; 1: 904–907.

    Article  CAS  Google Scholar 

  3. Schlosstein L, Terasaki PI, Bluestone R, Pearson CM . High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973; 288: 704–706.

    Article  CAS  Google Scholar 

  4. Smith JA, Marker-Hermann E, Colbert RA . Pathogenesis of ankylosing spondylitis: current concepts. Best Pract Res Clin Rheumatol 2006; 20: 571–591.

    Article  CAS  Google Scholar 

  5. Bowness P . HLA B27 in health and disease: a double-edged sword? Rheumatology (Oxford) 2002; 41: 857–868.

    Article  CAS  Google Scholar 

  6. Sims AM, Wordsworth BP, Brown MA . Genetic susceptibility to ankylosing spondylitis. Curr Mol Med 2004; 4: 13–20.

    Article  CAS  Google Scholar 

  7. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.

    Article  CAS  Google Scholar 

  8. Brown MA . Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology (Oxford) 2008; 47: 132–137.

    Article  CAS  Google Scholar 

  9. Harvey D, Pointon JJ, Evans DM, Karaderi T, Farrar C, Appleton LH et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum Mol Genet 2009; 18: 4204–4212.

    Article  CAS  Google Scholar 

  10. Tsui FW, Haroon N, Reveille JD, Rahman P, Chiu B, Tsui HW et al. Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann Rheum Dis 2010; 69: 733–736.

    Article  CAS  Google Scholar 

  11. Maksymowych WP, Inman RD, Gladman DD, Reeve JP, Pope A, Rahman P . Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. Arthritis Rheum 2009; 60: 1317–1323.

    Article  CAS  Google Scholar 

  12. Brown MA . Genetics and the pathogenesis of ankylosing spondylitis. Curr Opin Rheumatol 2009; 21: 318–323.

    Article  CAS  Google Scholar 

  13. Reveille JD . The genetic basis of ankylosing spondylitis. Curr Opin Rheumatol 2006; 18: 332–341.

    Article  CAS  Google Scholar 

  14. Carter KW, Pluzhnikov A, Timms AE, Miceli-Richard C, Bourgain C, Wordsworth BP et al. Combined analysis of three whole genome linkage scans for Ankylosing Spondylitis. Rheumatology (Oxford) 2007; 46: 763–771.

    Article  CAS  Google Scholar 

  15. Kulkarni S, Martin MP, Carrington M . The Yin and Yang of HLA and KIR in human disease. Semin Immunol 2008; 20: 343–352.

    Article  CAS  Google Scholar 

  16. Diaz-Pena R, Blanco-Gelaz MA, Lopez-Larrea C . KIR genes and their role in spondyloarthropathies. Adv Exp Med Biol 2009; 649: 286–299.

    Article  CAS  Google Scholar 

  17. Gardiner CM . Killer cell immunoglobulin-like receptors on NK cells: the how, where and why. Int J Immunogenet 2008; 35: 1–8.

    Article  CAS  Google Scholar 

  18. Vilches C, Parham P . KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002; 20: 217–251.

    Article  CAS  Google Scholar 

  19. Parham P . Immunogenetics of killer cell immunoglobulin-like receptors. Mol Immunol 2005; 42: 459–462.

    Article  CAS  Google Scholar 

  20. Anfossi N, Doisne JM, Peyrat MA, Ugolini S, Bonnaud O, Bossy D et al. Coordinated expression of Ig-like inhibitory MHC class I receptors and acquisition of cytotoxic function in human CD8+ T cells. J Immunol 2004; 173: 7223–7229.

    Article  CAS  Google Scholar 

  21. de Maria A, Ferraris A, Guastella M, Pilia S, Cantoni C, Polero L et al. Expression of HLA class I-specific inhibitory natural killer cell receptors in HIV-specific cytolytic T lymphocytes: impairment of specific cytolytic functions. Proc Natl Acad Sci USA 1997; 94: 10285–10288.

    Article  CAS  Google Scholar 

  22. van der Veken LT, Campelo MD, van der Hoorn MA, Hagedoorn RS, van Egmond HM, van Bergen J et al. Functional analysis of killer Ig-like receptor-expressing cytomegalovirus-specific CD8+ T cells. J Immunol 2009; 182: 92–101.

    Article  CAS  Google Scholar 

  23. Parham P . MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5: 201–214.

    Article  CAS  Google Scholar 

  24. Sambrook JG, Bashirova A, Palmer S, Sims S, Trowsdale J, Abi-Rached L et al. Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res 2005; 15: 25–35.

    Article  CAS  Google Scholar 

  25. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P . Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum 2005; 52: 3586–3595.

    Article  CAS  Google Scholar 

  26. Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M . Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173: 4273–4276.

    Article  CAS  Google Scholar 

  27. Martin MP, Carrington M . KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol 2008; 415: 49–64.

    CAS  PubMed  Google Scholar 

  28. Ploski R, Luszczek W, Kusnierczyk P, Nockowski P, Cislo M, Krajewski P et al. A role for KIR gene variants other than KIR2DS1 in conferring susceptibility to psoriasis. Hum Immunol 2006; 67: 521–526.

    Article  CAS  Google Scholar 

  29. Holm SJ, Sakuraba K, Mallbris L, Wolk K, Stahle M, Sanchez FO . Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J Invest Dermatol 2005; 125: 721–730.

    Article  CAS  Google Scholar 

  30. Lorentzen AR, Karlsen TH, Olsson M, Smestad C, Mero IL, Woldseth B et al. Killer immunoglobulin-like receptor ligand HLA-Bw4 protects against multiple sclerosis. Ann Neurol 2009; 65: 658–666.

    Article  CAS  Google Scholar 

  31. Lopez-Larrea C, Blanco-Gelaz MA, Torre-Alonso JC, Bruges Armas J, Suarez-Alvarez B, Pruneda L et al. Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 Caucasian populations. Arthritis Res Ther 2006; 8: R101.

    Article  Google Scholar 

  32. Diaz-Pena R, Blanco-Gelaz MA, Suarez-Alvarez B, Martinez-Borra J, Lopez-Vazquez A, Alonso-Arias R et al. Activating KIR genes are associated with ankylosing spondylitis in Asian populations. Hum Immunol 2008; 69: 437–442.

    Article  CAS  Google Scholar 

  33. Jiao YL, Ma CY, Wang LC, Cui B, Zhang J, You L et al. Polymorphisms of KIRs gene and HLA-C alleles in patients with ankylosing spondylitis: possible association with susceptibility to the disease. J Clin Immunol 2008; 28: 343–349.

    Article  CAS  Google Scholar 

  34. Harvey D, Pointon JJ, Sleator C, Meenagh A, Farrar C, Sun JY et al. Analysis of killer immunoglobulin-like receptor genes in ankylosing spondylitis. Ann Rheum Dis 2009; 68: 595–598.

    Article  CAS  Google Scholar 

  35. Zhang BC, Liu Y, Jiao YL, Zhao YR, Li JF . Genotype and haplotype analysis of killer cell immunoglobulin-like receptors in ankylosing spondylitis. Zhonghua Yi Xue Za Zhi 2009; 89: 91–95. Chinese.

    CAS  PubMed  Google Scholar 

  36. Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P . The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 1995; 181: 1133–1144.

    Article  CAS  Google Scholar 

  37. Litwin V, Gumperz J, Parham P, Phillips JH, Lanier LL . NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med 1994; 180: 537–543.

    Article  CAS  Google Scholar 

  38. Vitale M, Sivori S, Pende D, Augugliaro R, Di Donato C, Amoroso A et al. Physical and functional independency of p70 and p58 natural killer (NK) cell receptors for HLA class I: their role in the definition of different groups of alloreactive NK cell clones. Proc Natl Acad Sci USA 1996; 93: 1453–1457.

    Article  CAS  Google Scholar 

  39. Gomez-Lozano N, Estefania E, Williams F, Halfpenny I, Middleton D, Solis R et al. The silent KIR3DP1 gene (CD158c) is transcribed and might encode a secreted receptor in a minority of humans, in whom the KIR3DP1, KIR2DL4 and KIR3DL1/KIR3DS1 genes are duplicated. Eur J Immunol 2005; 35: 16–24.

    Article  CAS  Google Scholar 

  40. Carrington M, Gao X, Norman P . KIR gene allele frequencies in populations from USA (African American) USA (European) and England. Human Immunology 2004; 65: 1191.

    Article  Google Scholar 

  41. Available from: www.allelefrequencies.net

  42. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH . Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 1998; 391: 703–707.

    Article  CAS  Google Scholar 

  43. Gillespie GM, Bashirova A, Dong T, McVicar DW, Rowland-Jones SL, Carrington M . Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T cell epitopes. AIDS Res Hum Retroviruses 2007; 23: 451–455.

    Article  CAS  Google Scholar 

  44. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002; 31: 429–434.

    Article  CAS  Google Scholar 

  45. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 2007; 204: 3027–3036.

    Article  CAS  Google Scholar 

  46. Li H, Pascal V, Martin MP, Carrington M, Anderson SK . Genetic control of variegated KIR gene expression: polymorphisms of the bi-directional KIR3DL1 promoter are associated with distinct frequencies of gene expression. PLoS Genet 2008; 4: e1000254.

    Article  Google Scholar 

  47. Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R et al. Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 2001; 166: 2992–3001.

    Article  CAS  Google Scholar 

  48. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P . Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 2006; 203: 633–645.

    Article  CAS  Google Scholar 

  49. Pascal V, Yamada E, Martin MP, Alter G, Altfeld M, Metcalf JA et al. Detection of KIR3DS1 on the cell surface of peripheral blood NK cells facilitates identification of a novel null allele and assessment of KIR3DS1 expression during HIV-1 infection. J Immunol 2007; 179: 1625–1633.

    Article  CAS  Google Scholar 

  50. Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P . The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol 2003; 171: 6640–6649.

    Article  CAS  Google Scholar 

  51. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 2007; 39: 733–740.

    Article  CAS  Google Scholar 

  52. van der Linden S, Valkenburg HA, Cats A . Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984; 27: 361–368.

    Article  CAS  Google Scholar 

  53. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997; 7: 753–763.

    Article  CAS  Google Scholar 

  54. van Bergen J, Stewart CA, van den Elsen PJ, Trowsdale J . Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors. Eur J Immunol 2005; 35: 2191–2199.

    Article  CAS  Google Scholar 

  55. Trundley A, Frebel H, Jones D, Chang C, Trowsdale J . Allelic expression patterns of KIR3DS1 and 3DL1 using the Z27 and DX9 antibodies. Eur J Immunol 2007; 37: 780–787.

    Article  CAS  Google Scholar 

  56. Remtoula N, Bensussan A, Marie-Cardine A . Cutting edge: selective expression of inhibitory or activating killer cell Ig-like receptors in circulating CD4+ T lymphocytes. J Immunol 2008; 180: 2767–2771.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Support of the Leading Scientific Schools NS-2395.2008.4, Molecular and Cell Biology Program RAS, Rosnauka 02.512.12.2053, Rosobrazovanie P 256 and Basic Research for Medicine RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy M Chudakov.

Additional information

Note: Supplementary information is available on the Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvyagin, I., Mamedov, I., Britanova, O. et al. Contribution of functional KIR3DL1 to ankylosing spondylitis. Cell Mol Immunol 7, 471–476 (2010). https://doi.org/10.1038/cmi.2010.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.42

Keywords

This article is cited by

Search

Quick links