Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease

Abstract

The propagation and regulation of an immune response is driven by a network of effector and regulatory T (Treg) cells. The interplay of effector T and Treg cells determines the direction of the immune response towards inflammation or its resolution in an autoimmune disease setting. In autoimmune diseases, this interplay shifts the balance in favor of the development of autoreactive effector T cells, resulting in inflammatory pathology. The objective of an effective therapeutic approach for autoimmune disease is to restore this balance. In this review, we describe the characteristics and development of pathogenic T helper 1 (Th1) and Th17 cells and the beneficial Treg cells in autoimmune diseases and the crucial roles of the cytokine milieu in influencing the balance of these T-cell subsets. Given the importance of cytokines, we discuss current immunotherapeutic strategies using cytokine or cytokine receptor antibodies for the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Mosmann TR, Coffman RL . TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties . Annu Rev Immunol 1989 ; 7 : 145 – 173 .

    Article  CAS  PubMed  Google Scholar 

  2. Afzali B, Lombardi G, Lechler RI, Lord GM . The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease . Clin Exp Immunol 2007 ; 148 : 32 – 46 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al . A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 . Nat Immunol 2005 ; 6 : 1133 – 1141 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakaguchi S . Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses . Annu Rev Immunol 2004 ; 22 : 531 – 562 .

    Article  CAS  PubMed  Google Scholar 

  5. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al . Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages . Nat Immunol 2005 ; 6 : 1123 – 1132 .

    Article  CAS  PubMed  Google Scholar 

  6. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S et al . IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis . J Immunol 2006 ; 177 : 566 – 573 .

    Article  CAS  PubMed  Google Scholar 

  7. Weaver CT, Hatton RD, Mangan PR, Harrington LE . IL-17 family cytokines and the expanding diversity of effector T cell lineages . Annu Rev Immunol 2007 ; 25 : 821 – 852 .

    Article  CAS  PubMed  Google Scholar 

  8. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU et al . IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways . Arthritis Res Ther 2004 ; 6 : R120 – R128 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corthay A . How do regulatory T cells work? Scand J Immunol 2009 ; 70 : 326 – 336 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sospedra M, Martin R . Immunology of multiple sclerosis . Annu Rev Immunol 2005 ; 23 : 683 – 747 .

    Article  CAS  PubMed  Google Scholar 

  11. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E et al . Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma . J Immunol 1988 ; 140 : 1506 – 1510 .

    CAS  PubMed  Google Scholar 

  12. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA et al . Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation . J Exp Med 2003 ; 198 : 1951 – 1957 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Hong J, Sun W, Xu G, Li N, Chen X et al . Role of IFN-gamma in induction of Foxp3 and conversion of CD4+CD25 T cells to CD4+ Tregs . J Clin Invest 2006 ; 116 : 2434 – 2441 .

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 cells . Annu Rev Immunol 2009 ; 27 : 485 – 517 .

    Article  CAS  PubMed  Google Scholar 

  15. Steinman L . A rush to judgment on Th17 . J Exp Med 2008 ; 205 : 1517 – 1522 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pettinelli CB, McFarlin DE . Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2 T lymphocytes . J Immunol 1981 ; 127 : 1420 – 1423 .

    CAS  PubMed  Google Scholar 

  17. Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK . Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes . J Immunol 2009 ; 183 : 7169 – 7177 .

    Article  PubMed  CAS  Google Scholar 

  18. Liu X, Leung S, Wang C, Tan Z, Wang J, Guo TB et al . Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease . Nat Med 16 : 191 – 197 .

    Article  CAS  PubMed  Google Scholar 

  19. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases . J Immunol 1995 ; 155 : 1151 – 1164 .

    CAS  PubMed  Google Scholar 

  20. Stummvoll GH, DiPaolo RJ, Huter EN, Davidson TS, Glass D, Ward JM et al . Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells . J Immunol 2008 ; 181 : 1908 – 1916 .

    Article  CAS  PubMed  Google Scholar 

  21. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al . Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3 . J Exp Med 2003 ; 198 : 1875 – 1886 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huter EN, Punkosdy GA, Glass DD, Cheng LI, Ward JM, Shevach EM . TGF-beta-induced Foxp3+ regulatory T cells rescue scurfy mice . Eur J Immunol 2008 ; 38 : 1814 – 1821 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O'Farrelly C et al . CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis . J Immunol 2009 ; 183 : 7602 – 7610 .

    Article  CAS  PubMed  Google Scholar 

  24. Kumar M, Putzki N, Limmroth V, Remus R, Lindemann M, Knop D et al . CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis . J Neuroimmunol 2006 ; 180 : 178 – 184 .

    Article  CAS  PubMed  Google Scholar 

  25. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis . J Exp Med 2004 ; 199 : 971 – 979 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR et al . Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation . Nat Med 2007 ; 13 : 423 – 431 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA et al . Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy . J Exp Med 2004 ; 200 : 277 – 285 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE . TNF downmodulates the function of human CD4+CD25hi T-regulatory cells . Blood 2006 ; 108 : 253 – 261 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C . Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis . Eur J Immunol 2003 ; 33 : 215 – 223 .

    Article  CAS  PubMed  Google Scholar 

  30. Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V . CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease . Arthritis Res Ther 2004 ; 6 : R335 – R346 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O . CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis . Clin Exp Immunol 2005 ; 140 : 360 – 367 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS . CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid . Arthritis Rheum 2004 ; 50 : 2775 – 2785 .

    Article  PubMed  Google Scholar 

  33. Chen X, Fang L, Song S, Guo TB, Liu A, Zhang JZ . Thymic regulation of autoimmune disease by accelerated differentiation of Foxp3+ regulatory T cells through IL-7 signaling pathway . J Immunol 2009 ; 183 : 6135 – 6144 .

    Article  CAS  PubMed  Google Scholar 

  34. Coffman RL . Origins of the TH1–TH2 model: a personal perspective . Nat Immunol 2006 ; 7 : 539 – 541 .

    Article  CAS  PubMed  Google Scholar 

  35. Rengarajan J, Szabo SJ, Glimcher LH . Transcriptional regulation of Th1/Th2 polarization . Immunol Today 2000 ; 21 : 479 – 483 .

    Article  CAS  PubMed  Google Scholar 

  36. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment . Cell 2000 ; 100 : 655 – 669 .

    Article  CAS  PubMed  Google Scholar 

  37. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL . Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins . J Immunol 1986 ; 136 : 2348 – 2357 .

    CAS  PubMed  Google Scholar 

  38. Zheng W, Flavell RA . The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells . Cell 1997 ; 89 : 587 – 596 .

    Article  CAS  PubMed  Google Scholar 

  39. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al . Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells . Nature 2006 ; 441 : 235 – 238 .

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Lee YS, Yu CR, Egwuagu CE . Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases . J Immunol 2008 ; 180 : 6070 – 6076 .

    Article  CAS  PubMed  Google Scholar 

  41. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S et al . IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis . Proc Natl Acad Sci USA 2008 ; 105 : 9041 – 9046 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS et al . STAT3 regulates cytokine-mediated generation of inflammatory helper T cells . J Biol Chem 2007 ; 282 : 9358 – 9363 .

    Article  CAS  PubMed  Google Scholar 

  43. Ivanov, II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al . The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells . Cell 2006 ; 126 : 1121 – 1133 .

    Article  CAS  PubMed  Google Scholar 

  44. Zhou L, Lopes JE, Chong MM, Ivanov, II, Min R, Victora GD et al . TGF-beta-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORgammat function . Nature 2008 ; 453 : 236 – 240 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL . Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17 . J Biol Chem 2003 ; 278 : 1910 – 1914 .

    Article  CAS  PubMed  Google Scholar 

  46. de Jong BA, Huizinga TW, Bollen EL, Uitdehaag BM, Bosma GP, van Buchem MA et al . Production of IL-1beta and IL-1Ra as risk factors for susceptibility and progression of relapse-onset multiple sclerosis . J Neuroimmunol 2002 ; 126 : 172 – 179 .

    Article  CAS  PubMed  Google Scholar 

  47. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB et al . IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells . Nature 2007 ; 448 : 484 – 487 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al . IL-21 and TGF-beta are required for differentiation of human TH17 cells . Nature 2008 ; 454 : 350 – 352 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS et al . Critical regulation of early Th17 cell differentiation by interleukin-1 signaling . Immunity 2009 ; 30 : 576 – 587 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F . Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells . Nat Immunol 2007 ; 8 : 942 – 949 .

    Article  CAS  PubMed  Google Scholar 

  51. Shirakawa F, Tanaka Y, Ota T, Suzuki H, Eto S, Yamashita U . Expression of interleukin 1 receptors on human peripheral T cells . J Immunol 1987 ; 138 : 4243 – 4248 .

    CAS  PubMed  Google Scholar 

  52. Stritesky GL, Yeh N, Kaplan MH . IL-23 promotes maintenance but not commitment to the Th17 lineage . J Immunol 2008 ; 181 : 5948 – 5955 .

    Article  CAS  PubMed  Google Scholar 

  53. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al . The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009 ; 10 : 314 – 324 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB et al . STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice . J Immunol 2006 ; 176 : 5652 – 5661 .

    Article  CAS  PubMed  Google Scholar 

  55. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A et al . Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis . Nat Genet 2007 ; 39 : 1083 – 1091 .

    Article  CAS  PubMed  Google Scholar 

  56. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, de Jager PL et al . Risk alleles for multiple sclerosis identified by a genomewide study . N Engl J Med 2007 ; 357 : 851 – 862 .

    Article  CAS  PubMed  Google Scholar 

  57. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M et al . Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis . Nat Genet 2007 ; 39 : 1108 – 1113 .

    Article  CAS  PubMed  Google Scholar 

  58. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J . Interleukin-7 receptor signaling network: an integrated systems perspective . Cell Mol Immunol 2008 ; 5 : 79 – 89 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR et al . Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets . J Exp Med 2008 ; 205 : 1701 – 1714 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Leung S, Wang C, Tan Z, Wang J, Guo TB et al . Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease . Nat Med 2010 ; 16 : 191 – 197 .

    Article  CAS  PubMed  Google Scholar 

  61. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3 . Science 2003 ; 299 : 1057 – 1061 .

    Article  CAS  PubMed  Google Scholar 

  62. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells . Nat Immunol 2003 ; 4 : 337 – 342 .

    Article  CAS  PubMed  Google Scholar 

  63. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells . Nat Immunol 2003 ; 4 : 330 – 336 .

    Article  CAS  PubMed  Google Scholar 

  64. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C et al . JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome . J Clin Invest 2000 ; 106 : R75 – 81 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al . X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy . Nat Genet 2001 ; 27 : 18 – 20 .

    Article  CAS  PubMed  Google Scholar 

  66. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al . Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse . Nat Genet 2001 ; 27 : 68 – 73 .

    Article  CAS  PubMed  Google Scholar 

  67. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al . The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 . Nat Genet 2001 ; 27 : 20 – 21 .

    Article  CAS  PubMed  Google Scholar 

  68. Wan YY, Flavell RA . Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter . Proc Natl Acad Sci USA 2005 ; 102 : 5126 – 5131 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . Regulatory T cell lineage specification by the forkhead transcription factor foxp3 . Immunity 2005 ; 22 : 329 – 341 .

    Article  CAS  PubMed  Google Scholar 

  70. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A et al . B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes . Immunity 2000 ; 12 : 431 – 440 .

    Article  CAS  PubMed  Google Scholar 

  71. Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM . Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells . J Exp Med 2001 ; 194 : 427 – 438 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tai X, Cowan M, Feigenbaum L, Singer A . CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2 . Nat Immunol 2005 ; 6 : 152 – 162 .

    Article  CAS  PubMed  Google Scholar 

  73. Soper DM, Kasprowicz DJ, Ziegler SF . IL-2Rbeta links IL-2R signaling with Foxp3 expression . Eur J Immunol 2007 ; 37 : 1817 – 1826 .

    Article  CAS  PubMed  Google Scholar 

  74. Lio CW, Hsieh CS . A two-step process for thymic regulatory T cell development . Immunity 2008 ; 28 : 100 – 111 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bayer AL, Yu A, Adeegbe D, Malek TR . Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period . J Exp Med 2005 ; 201 : 769 – 777 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bayer AL, Lee JY, de la Barrera A, Surh CD, Malek TR . A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells . J Immunol 2008 ; 181 : 225 – 234 .

    Article  CAS  PubMed  Google Scholar 

  77. Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA . IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development . J Immunol 2008 ; 181 : 3285 – 3290 .

    Article  CAS  PubMed  Google Scholar 

  78. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY . A function for interleukin 2 in Foxp3-expressing regulatory T cells . Nat Immunol 2005 ; 6 : 1142 – 1151 .

    Article  CAS  PubMed  Google Scholar 

  79. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA . IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells . J Immunol 2007 ; 178 : 280 – 290 .

    Article  CAS  PubMed  Google Scholar 

  80. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT et al . Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007 ; 109 : 4368 – 4375 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al . Molecular antagonism and plasticity of regulatory and inflammatory T cell programs . Immunity 2008 ; 29 : 44 – 56 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Curotto de Lafaille MA, Lafaille JJ . Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009 ; 30 : 626 – 635 .

    Article  CAS  PubMed  Google Scholar 

  83. Zhou L, Chong MM, Littman DR . Plasticity of CD4+ T cell lineage differentiation . Immunity 2009 ; 30 : 646 – 655 .

    Article  CAS  PubMed  Google Scholar 

  84. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ . All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation . J Exp Med 2007 ; 204 : 1765 – 1774 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hill JA, Hall JA, Sun CM, Cai Q, Ghyselinck N, Chambon P et al . Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells . Immunity 2008 ; 29 : 758 – 770 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M et al . Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid . Science 2007 ; 317 : 256 – 260 .

    Article  CAS  PubMed  Google Scholar 

  87. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y et al . A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism . J Exp Med 2007 ; 204 : 1757 – 1764 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR et al . Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid . J Exp Med 2007 ; 204 : 1775 – 1785 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M et al . Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009 ; 10 : 1000 – 1007 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ . The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation . Nat Immunol 2009 ; 10 : 595 – 602 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT et al . Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses . Nature 2009 ; 458 : 351 – 356 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A et al . CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner . Science 2009 ; 326 : 986 – 991 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thornton AM, Shevach EM . CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production . J Exp Med 1998 ; 188 : 287 – 296 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al . The inhibitory cytokine IL-35 contributes to regulatory T-cell function . Nature 2007 ; 450 : 566 – 569 .

    Article  CAS  PubMed  Google Scholar 

  95. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI . Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells . Blood 2007 ; 109 : 2058 – 2065 .

    Article  CAS  PubMed  Google Scholar 

  96. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ . Human T regulatory cells can use the perforin pathway to cause autologous target cell death . Immunity 2004 ; 21 : 589 – 601 .

    Article  CAS  PubMed  Google Scholar 

  97. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ . Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism . J Immunol 2005 ; 174 : 1783 – 1786 .

    Article  CAS  PubMed  Google Scholar 

  98. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al . CTLA-4 control over Foxp3+ regulatory T cell function . Science 2008 ; 322 : 271 – 275 .

    Article  CAS  PubMed  Google Scholar 

  99. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al . Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression . Blood 2007 ; 110 : 1225 – 1232 .

    Article  CAS  PubMed  Google Scholar 

  100. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al . Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression . J Exp Med 2007 ; 204 : 1257 – 1265 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F . An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation . J Exp Med 1999 ; 190 : 995 – 1004 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suri-Payer E, Cantor H . Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4+CD25+ T cells . J Autoimmun 2001 ; 16 : 115 – 123 .

    Article  CAS  PubMed  Google Scholar 

  103. Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S et al . IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells . Int Immunol 2004 ; 16 : 249 – 256 .

    Article  CAS  PubMed  Google Scholar 

  104. Burkhart C, Liu GY, Anderton SM, Metzler B, Wraith DC . Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10 . Int Immunol 1999 ; 11 : 1625 – 1634 .

    Article  CAS  PubMed  Google Scholar 

  105. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA . CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes . Proc Natl Acad Sci USA 2003 ; 100 : 10878 – 10883 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fantini MC, Rizzo A, Fina D, Caruso R, Becker C, Neurath MF et al . IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells . Eur J Immunol 2007 ; 37 : 3155 – 3163 .

    Article  CAS  PubMed  Google Scholar 

  107. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G et al . IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells . Proc Natl Acad Sci USA 2008 ; 105 : 18460 – 18465 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nadkarni S, Mauri C, Ehrenstein MR . Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta . J Exp Med 2007 ; 204 : 33 – 39 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z et al . Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation . Immunity 2007 ; 26 : 371 – 381 .

    Article  CAS  PubMed  Google Scholar 

  110. Oldfield V, Dhillon S, Plosker GL . Tocilizumab: a review of its use in the management of rheumatoid arthritis . Drugs 2009 ; 69 : 609 - 632 .

    Article  CAS  PubMed  Google Scholar 

  111. Stubgen JP . Tumor necrosis factor-alpha antagonists and neuropathy . Muscle Nerve 2008 ; 37 : 281 – 292 .

    Article  CAS  PubMed  Google Scholar 

  112. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T et al . Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis . J Clin Invest 2006 ; 116 : 1317 – 1326 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J et al . Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis . Arch Neurol 2009 ; 66 : 483 – 489 .

    Article  PubMed  PubMed Central  Google Scholar 

  114. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB et al . TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1 . Nat Med 2007 ; 13 : 711 – 718 .

    Article  CAS  PubMed  Google Scholar 

  115. Hartigan-O'Connor DJ, Poon C, Sinclair E, McCune JM . Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells . J Immunol Methods 2007 ; 319 : 41 – 52 .

    Article  CAS  PubMed  Google Scholar 

  116. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N et al . Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2) . Lancet 2008 ; 371 : 1675 – 1684 .

    Article  CAS  PubMed  Google Scholar 

  117. Menter A . The status of biologic therapies in the treatment of moderate to severe psoriasis . Cutis 2009 ; 84 : 14 – 24 .

    PubMed  Google Scholar 

  118. Ding C, Xu J, Li J . ABT-874, a fully human monoclonal anti-IL-12/IL-23 antibody for the potential treatment of autoimmune diseases . Curr Opin Investig Drugs 2008 ; 9 : 515 – 522 .

    CAS  PubMed  Google Scholar 

  119. Sands BE, Jacobson EW, Sylwestrowicz T, Younes Z, Dryden G, Fedorak R et al . Randomized, double-blind, placebo-controlled trial of the oral interleukin-12/23 inhibitor apilimod mesylate for treatment of active Crohn's disease . Inflamm Bowel Dis 2009 ; in press .

  120. Billich A . Drug evaluation: apilimod, an oral IL-12/IL-23 inhibitor for the treatment of autoimmune diseases and common variable immunodeficiency . IDrugs 2007 ; 10 : 53 – 59 .

    CAS  PubMed  Google Scholar 

  121. Waugh J, Perry CM . Anakinra: a review of its use in the management of rheumatoid arthritis . BioDrugs 2005 ; 19 : 189 – 202 .

    Article  CAS  PubMed  Google Scholar 

  122. Steinman L . Mixed results with modulation of TH-17 cells in human autoimmune diseases . Nat Immunol; 11 : 41 – 44 .

    Article  PubMed  CAS  Google Scholar 

  123. van den Berg WB, Miossec P . IL-17 as a future therapeutic target for rheumatoid arthritis . Nat Rev Rheumatol 2009 ; 5 : 549 – 553 .

    Article  CAS  PubMed  Google Scholar 

  124. Dhillon S, Lyseng-Williamson KA, Scott LJ . Etanercept: a review of its use in the management of rheumatoid arthritis . Drugs 2007 ; 67 : 1211 – 1241 .

    Article  CAS  PubMed  Google Scholar 

  125. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Furst D, Weisman MH et al . Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate . Arthritis Rheum 2004 ; 50 : 1051 – 1065 .

    Article  CAS  PubMed  Google Scholar 

  126. Burmester GR, Mariette X, Montecucco C, Monteagudo-Saez I, Malaise M, Tzioufas AG et al . Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the Research in Active Rheumatoid Arthritis (ReAct) trial . Ann Rheum Dis 2007 ; 66 : 732 – 739 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martin R . Humanized anti-CD25 antibody treatment with daclizumab in multiple sclerosis . Neurodegener Dis 2008 ; 5 : 23 – 26 .

    Article  CAS  PubMed  Google Scholar 

  128. Gatto B . Atacicept, a homodimeric fusion protein for the potential treatment of diseases triggered by plasma cells . Curr Opin Investig Drugs 2008 ; 9 : 1216 – 1227 .

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwu Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leung, S., Liu, X., Fang, L. et al. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol 7, 182–189 (2010). https://doi.org/10.1038/cmi.2010.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.22

Keywords

This article is cited by

Search

Quick links