Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity

Abstract

Follicular helper T (Tfh) cells select mutated B cells in germinal centres, which can then differentiate into long-lived high affinity memory B cells and plasma cells. Tfh cells are regulated by a unique molecular programme orchestrated by the transcriptional repressor Bcl6. This transcription factor turns down expression of multiple genes, including transcriptional regulators of other T helper lineages and a vast amount of microRNAs. This enables Tfh cells to express a suite of chemokine receptors, stimulatory ligands and cytokines that enable migration into B-cell follicles, and provision of effective help to B cells. Not surprisingly, dysregulation of this powerful helper subset can lead to a range of autoantibody-mediated diseases; indeed, aberrant accumulation of Tfh cells has been linked with systemic lupus erythematosus, Sjogren's disease and autoimmune arthritis. Here we dissect multiple checkpoints that operate throughout Tfh cell development and maturation to maintain immunological tolerance while mounting robust and long-lasting antibody responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG . Cellular and genetic mechanisms of self tolerance and autoimmunity . Nature 2005 ; 435 : 590 – 597 .

    Article  CAS  Google Scholar 

  2. Wing K, Sakaguchi S . Regulatory T cells exert checks and balances on self tolerance and autoimmunity . Nat Immunol 2010 ; 11 : 7 – 13 .

    Article  CAS  Google Scholar 

  3. Stein H, Gerdes J, Mason DY . The normal and malignant germinal centre . Clin Haematol 1982 ; 11 : 531 – 559 .

    CAS  PubMed  Google Scholar 

  4. Velardi A, Mingari MC, Moretta L, Grossi CE . Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells . J Immunol 1986 ; 137 : 2808 – 2813 .

    CAS  PubMed  Google Scholar 

  5. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B et al . Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation . Science 2009 ; 325 : 1006 – 1010 .

    Article  CAS  Google Scholar 

  6. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD et al . Bcl6 mediates the development of T follicular helper cells . Science 2009 ; 325 : 1001 – 1005 .

    Article  CAS  Google Scholar 

  7. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL et al . The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment . Immunity 2009 ; 31 : 457 – 468 .

    Article  CAS  Google Scholar 

  8. Vinuesa CG, Sanz I, Cook MC . Dysregulation of germinal centres in autoimmune disease . Nat Rev Immunol 2009 ; 9 : 845 – 857 .

    Article  CAS  Google Scholar 

  9. Radic MZ, Weigert M . Genetic and structural evidence for antigen selection of anti-DNA antibodies . Annu Rev Immunol 1994 ; 12 : 487 – 520 .

    Article  CAS  Google Scholar 

  10. Strasser A, Bouillet P . The control of apoptosis in lymphocyte selection . Immunol Rev 2003 ; 193 : 82 – 92 .

    Article  CAS  Google Scholar 

  11. Pulendran B, Kannourakis G, Nouri S, Smith KG, Nossal GJ . Soluble antigen can cause enhanced apoptosis of germinal-centre B cells . Nature 1995 ; 375 : 331 – 334 .

    Article  CAS  Google Scholar 

  12. Shokat KM, Goodnow CC . Antigen-induced B-cell death and elimination during germinal-centre immune responses . Nature 1995 ; 375 : 334 – 338 .

    Article  CAS  Google Scholar 

  13. Randall KL, Lambe T, Johnson A, Treanor B, Kucharska E, Domaschenz H et al . Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production . Nat Immunol 2009 ; 10 : 1283 – 1291 .

    Article  CAS  Google Scholar 

  14. Ditzel HJ . The K/BxN mouse: a model of human inflammatory arthritis . Trends Mol Med 2004 ; 10 : 40 – 45 .

    Article  CAS  Google Scholar 

  15. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D . Organ-specific disease provoked by systemic autoimmunity . Cell 1996 ; 87 : 811 – 822 .

    Article  CAS  Google Scholar 

  16. Victoratos P, Kollias G . Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells . Immunity 2009 ; 30 : 130 – 142 .

    Article  CAS  Google Scholar 

  17. Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T et al . From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins . Immunity 1999 ; 10 : 451 – 461 .

    Article  CAS  Google Scholar 

  18. Yu D, Vinuesa CG . What makes Tfh cells special . Trends Immunol 2010 ; in press .

  19. Yu D, Batten M, Mackay CR, King C . Lineage specification and heterogeneity of T follicular helper cells . Curr Opin Immunol 2009 ; 21 : 619 – 625 .

    Article  CAS  Google Scholar 

  20. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM et al . A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity . Nature 2005 ; 435 : 452 – 458 .

    Article  CAS  Google Scholar 

  21. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL et al . Follicular helper T cells are required for systemic autoimmunity . J Exp Med 2009 ; 206 : 561 – 576 .

    Article  CAS  Google Scholar 

  22. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG et al . Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus . Arthritis Rheum 2010 ; 62 : 234 – 244 .

    Article  CAS  Google Scholar 

  23. Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG et al . Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA . Nature 2007 ; 450 : 299 – 303 .

    Article  CAS  Google Scholar 

  24. Tsai LM, Yu D . MicroRNAs in common diseases and potential therapeutic applications . Clin Exp Pharmacol Physiol 2010 ; 37 : 102 – 107 .

    Article  CAS  Google Scholar 

  25. Vinuesa CG, Rigby RJ, Yu D . Logic and extent of miRNA-mediated control of autoimmune gene expression . Int Rev Immunol 2009 ; 28 : 112 – 138 .

    Article  CAS  Google Scholar 

  26. Luo X, Tsai LM, Shen N, Yu D . Evidence for microRNA-mediated regulation in rheumatic diseases . Ann Rheum Dis 2010 ; 69 (Suppl 1) : i30 – i36 .

    Article  CAS  Google Scholar 

  27. Zhu J, Paul WE . CD4 T cells: fates, functions, and faults . Blood 2008 ; 112 : 1557 – 1569 .

    Article  CAS  Google Scholar 

  28. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L et al . Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages . Immunity 2008 ; 29 : 138 – 149 .

    Article  CAS  Google Scholar 

  29. Vogelzang A, McGuire HM, Yu D, Sprent J, Mackay CR, King C . A fundamental role for interleukin-21 in the generation of T follicular helper cells . Immunity 2008 ; 29 : 127 – 137 .

    Article  CAS  Google Scholar 

  30. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG . The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding . Nat Immunol 2009 ; 10 : 375 – 384 .

    Article  CAS  Google Scholar 

  31. King IL, Mohrs M . IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells . J Exp Med 2009 ; 206 : 1001 – 1007 .

    Article  CAS  Google Scholar 

  32. Reinhardt RL, Liang HE, Locksley RM . Cytokine-secreting follicular T cells shape the antibody repertoire . Nat Immunol 2009 ; 10 : 385 – 393 .

    Article  CAS  Google Scholar 

  33. Zaretsky AG, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce EJ . T follicular helper cells differentiate from Th2 cells in response to helminth antigens . J Exp Med 2009 ; 206 : 991 – 999 .

    Article  CAS  Google Scholar 

  34. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B et al . Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12 . Immunol Cell Biol 2009 ; 87 : 590 – 600 .

    Article  CAS  Google Scholar 

  35. Kusam S, Toney LM, Sato H, Dent AL . Inhibition of Th2 differentiation and GATA-3 expression by BCL-6 . J Immunol 2003 ; 170 : 2435 – 2441 .

    Article  CAS  Google Scholar 

  36. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B et al . Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus . Nat Immunol 2009 ; 10 : 778 – 785 .

    Article  CAS  Google Scholar 

  37. Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ . Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps . Mamm Genome 1999 ; 10 : 335 – 348 .

    Article  CAS  Google Scholar 

  38. Hsu HC, Zhou T, Kim H, Barnes S, Yang P, Wu Q et al . Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis . Arthritis Rheum 2006 ; 54 : 343 – 355 .

    Article  CAS  Google Scholar 

  39. Hsu HC, Wu Y, Yang P, Wu Q, Job G, Chen J et al . Overexpression of activation-induced cytidine deaminase in B cells is associated with production of highly pathogenic autoantibodies . J Immunol 2007 ; 178 : 5357 – 5365 .

    Article  CAS  Google Scholar 

  40. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J et al . Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice . Nat Immunol 2008 ; 9 : 166 – 175 .

    Article  CAS  Google Scholar 

  41. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK . Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production . J Clin Invest 1996 ; 97 : 2063 – 2073 .

    Article  CAS  Google Scholar 

  42. Koshy M, Berger D, Crow MK . Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes . J Clin Invest 1996 ; 98 : 826 – 837 .

    Article  CAS  Google Scholar 

  43. Wong CK, Wong PT, Tam LS, Li EK, Chen DP, Lam CW . Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity . J Clin Immunol 2010 ; 30 : 45 – 52 .

    Article  CAS  Google Scholar 

  44. Clegg CH, Rulffes JT, Haugen HS, Hoggatt IH, Aruffo A, Durham SK et al . Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice . Int Immunol 1997 ; 9 : 1111 – 1122 .

    Article  CAS  Google Scholar 

  45. Higuchi T, Aiba Y, Nomura T, Matsuda J, Mochida K, Suzuki M et al . Cutting edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease . J Immunol 2002 ; 168 : 9 – 12 .

    Article  CAS  Google Scholar 

  46. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF et al . Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6 . J Immunol 2004 ; 173 : 5361 – 5371 .

    Article  CAS  Google Scholar 

  47. Bubier JA, Sproule TJ, Foreman O, Spolski R, Shaffer DJ, Morse HC 3rd et al . A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice . Proc Natl Acad Sci USA 2009 ; 106 : 1518 – 1523 .

    Article  CAS  Google Scholar 

  48. Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K . IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression . J Immunol 2007 ; 178 : 3822 – 3830 .

    Article  CAS  Google Scholar 

  49. Odegard JM, Marks BR, DiPlacido LD, Poholek AC, Kono DH, Dong C et al . ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity . J Exp Med 2008 ; 205 : 2873 – 2886 .

    Article  CAS  Google Scholar 

  50. Johansson-Lindbom B, Ingvarsson S, Borrebaeck CA . Germinal centers regulate human Th2 development . J Immunol 2003 ; 171 : 1657 – 1666 .

    Article  CAS  Google Scholar 

  51. Marinova E, Han S, Zheng B . Human germinal center T cells are unique Th cells with high propensity for apoptosis induction . Int Immunol 2006 ; 18 : 1337 – 1345 .

    Article  CAS  Google Scholar 

  52. Schenka AA, Muller S, Fournie JJ, Capila F, Vassallo J, Delsol G et al . CD4+ T cells downregulate Bcl-2 in germinal centers . J Clin Immunol 2005 ; 25 : 224 – 229 .

    Article  CAS  Google Scholar 

  53. Saito M, Novak U, Piovan E, Basso K, Sumazin P, Schneider C et al . BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma . Proc Natl Acad Sci USA 2009 ; 106 : 11294 – 11299 .

    Article  CAS  Google Scholar 

  54. Egle A, Harris AW, Bath ML, O'Reilly L, Cory S . VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia . Blood 2004 ; 103 : 2276 – 2283 .

    Article  CAS  Google Scholar 

  55. Lim HW, Hillsamer P, Kim CH . Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses . J Clin Invest 2004 ; 114 : 1640 – 1649 .

    Article  CAS  Google Scholar 

  56. Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L et al . Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery . Immunity 2008 ; 28 : 870 – 880 .

    Article  CAS  Google Scholar 

  57. Wu HY, Quintana FJ, Weiner HL . Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+CD25−LAP+ regulatory T cell and is associated with down-regulation of IL-17+CD4+ICOS+CXCR5+ follicular helper T cells . J Immunol 2008 ; 181 : 6038 – 6050 .

    Article  CAS  Google Scholar 

  58. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T et al . Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches . Science 2009 ; 323 : 1488 – 1492 .

    Article  CAS  Google Scholar 

  59. Aloisi F, Pujol-Borrell R . Lymphoid neogenesis in chronic inflammatory diseases . Nat Rev Immunol 2006 ; 6 : 205 – 217 .

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge constructive discussion with Nina Chevalier, Charles R. Mackay, Jing He and Zhanguo Li. CGV is supported by a Viertel Senior Medical Research Fellowship and NHMRC project and programme grants. DY is supported by a Cancer Institute New South Wales Fellowship, an NHMRC Fellowships and an NHMRC programme grant to CRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Vinuesa, C. Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity. Cell Mol Immunol 7, 198–203 (2010). https://doi.org/10.1038/cmi.2010.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.18

Keywords

This article is cited by

Search

Quick links